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On the Variety of Recurrence Phenomena in Chaotic Dynamics

-Revisit to Hamiltonian Chaos from Infinite Ergodicity-

Yoji Aizawa
Department of Applied Physics Advanced School of Science and Engineering Waseda University 3-4-1 Okubo

Shinjyuku-ku Tokyo, 169-8555, Japan

Non-stationary recurrence motions are often observed in chaotic systems. Strong intermittency is a typical
example which reveals slow dynamics with 1/fν spectra or slow relaxation of correlation functions (Aizawa,1984,
1989). In non-integrable hamiltonian systems also there appear such long time tails as an universal phenomenon,
where it is surmised that sticky regions or stagnant layers surrounding the invariant sets such as KAM tori or
Poincaré-Birkhoff tori play an essential role to induce a kind of strong intermittency with non-stationarity of
phase-space trajectories (Aizawa et al., 1989). Detailed structures and the recurrent mechanisms in the stagnant
layers have not yet been elucidated clearly in generic cases not only of high dimensional systems but also of
small degrees systems. In this report, we consider several cases which display essentially different scaling laws in
the recurrent time distribution. Especially our main concerns will be paid toward the non-stationary recurrence
properties in relation to the infinite measure ergodicity.
In the first part we discuss the phenomenology in high dimensional hamiltonian systems with many degrees of
freedom; lattice vibrations and cluster formation, where it is emphasized that the distribution of survival times
obeys the Log-Weibull law, and that the universal law is consistent with the Nekhoroshev’s estimation of the
characteristic time in Arnold diffusion. Another type of recurrent feature with inverse power law is discussed
by carrying out with the Mixmaster universe model of Bianchi type IX, where the infinite measure ergodicity is
proved in a lower dimensional subdynamics though the Mixmaster model is totally a hamiltonian system with
three degrees of freedom (Aizawa, 1997). The inverse power laws in recurrence time distributions are exactly
shown in other two dimensional mappings (modified Cat map, multi-baker’s map, and Mushroom billiard, etc)
(Miyaguchi, 2007).
In the second part of my talk, we discuss the re-injection mechanism in the stagnant layers by use of several one-
dimensional maps (modified Bernoulli map, Log-Weibull map, and Ant-lion map (infinite modal singular map))
which reveal non-stationary long time tails and infinite measure ergodicity. Those one-dimensional systems are
not exact reduction from the corresponding high dimensional hamiltonian flows, but we expect that the same
type of recurrent mechanism might be derived in high dimension cases. We discuss the origin of the universal
scaling relations for various classes of recurrent phenomenon. Some theoretical and numerical results obtained
from the renewal theories and the large deviation theories are introduced, and the interrelation between the
infinite ergodicity and the non-stationary recurrence phenomena is explained. Especially, it is emphasized that
the correlation functions and the power spectral density are random variables obeying universal distributions
in the non-stationary regime (Akimoto, 2007). From these results quite similar to the hamiltionian chaos, it
is conjectured that the infinite measure ergodicity might be hidden behind the multi-ergodic features of the
stagnant layers in hamiltionian chaos (Aizawa, 2005).
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Dynamical tunneling in systems with a mixed phase space

Arnd Bäcker

Institut für Theoretische Physik, TU Dresden, Germany

Typical Hamiltonian systems have a mixed phase space consisting of regular islands, which are dynamically
separated from the chaotic sea. While classically no transition between those regions is possible, they are
quantum mechanically coupled by the process of dynamical tunneling. We derive theoretical predictions for
dynamical tunneling rates, which describe the decay of regular states to the chaotic sea. Using an approach
based on the introduction of a fictitious integrable system, agreement with numerical data is found for 1D
kicked systems [1] and the mushroom billiard [2]. Finally, we will discuss the relevance of a precise knowledge
of dynamical tunneling rates for flooding of regular islands [3,4], transport in rough nano-wires [5], and spectral
statistics in systems with a mixed phase space.

References
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Phys. Rev. Lett. 100 (2008) 104101.
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Dynamical tunneling in mushroom billiards,
Phys. Rev. Lett. 100 (2008) 174103.
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Flooding of regular islands by chaotic states,
Phys. Rev. Lett. 94 (2005) 054102.
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Universality in the flooding of regular islands by chaotic states,
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Applications of the GALI Method to Localization in Nonlinear
Systems

Tassos Bountis, Thanos Manos and Eleni Christodoulidi

CRANS - Center for Research and Applications of Nonlinear Systems,
Department of Mathematics, University of Patras, Patras, Greece

e-mail address: bountis@math.upatras.gr

We investigate localization phenomena and stability properties of quasiperiodic oscillations in N degree of
freedom Hamiltonian systems and N coupled symplectic maps. In particular, we study an example of a para-
metrically driven Hamiltonian lattice with only quartic coupling terms and a system of N coupled standard
maps. We explore their dynamics using the Generalized Alignment Index (GALI), which constitutes a recently
developed numerical method for detecting chaotic orbits in many dimensions, estimating the dimensionality of
quasiperiodic tori and predicting slow diffusion in a faster and more reliable way than most other approaches
known to date.

References

Antonopoulos Ch, Bountis T 2006, Detecting Order and Chaos by the Linear Dependence Index, in ROMAI
Journal 2 (2), 1.
Christodoulidi H, Bountis T 2006, Low-Dimensional Quasiperiodic Motion in Hamiltonian Systems, in ROMAI
Journal 2, (2), 37.
Skokos Ch, Bountis T and Antonopoulos Ch, 2007, Geometrical Properties of Local Dynamics in Hamiltonian
Systems: The Generalized Alignment (GALI) Method, in Physica D, 231, 30.
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The Stability of Vertical Motion in the N-body Sitnikov Problem

Tassos Bountis1and K. E. Papadakis2

1CRANS - Center for Research and Applications of Nonlinear Systems,
Department of Mathematics, University of Patras, Patras, Greece

e-mail address: bountis@math.upatras.gr
2Department of Engineering Sciences, Division of Applied Mathematics and Mechanics, University of Patras,

Patras, Greece
e-mail address:k.papadakis@des.upatras.gr

We present results about the stability, bifurcations and families of 3D-periodic orbits of the Sitnikov motions in
the case of the restricted N-body problem. Here we consider ν=N-1 equal mass primary bodies which rotate on
a circle and the Nth body moves perpendicular to the plane of the primaries. We extend previous work on the
four-body problem to the N-body problem, for N=5, 9, 15 and 25. We found that the Sitnikov family, in all cases
under consideration, has only one stability interval. For N=5, 9, 15, 25 we have 14, 16, 18, 20 correspondingly,
critical Sitnikov periodic orbits from which 3D-families (no longer rectilinear) bifurcate. We have also studied
the fascinating question of the extent of bounded dynamics away from the z-axis, taking initial conditions on
x,y planes, at constant z(0) = z0 values, where z0 lies within the interval of stable rectilinear motions. We also
performed a similar study of the dynamics near some members of 3D families of periodic solutions and found,
on suitably chosen Poincaré (x, ẋ) surfaces, “islands” of ordered motion, while further away from them most
orbits become chaotic and eventually escape to infinity.

References

Soulis P S, Bountis T and Dvorak R, 2007 Stability of Motion in the Sitnikov Problem, in Cel. Mech. and Dyn.
Astron., 99, 129.
Soulis P S, Papadakis K E and Bountis T, 2008 Periodic Orbits and Bifurcations in the Sitnikov Four-body
Problem, in Cel. Mech. and Dyn. Astron., 2008, to appear.
Skokos Ch, 2001: Alignment Indices: a New, Simple Method for Determining the Ordered or Chaotic Nature of
Orbits, in J. Phys. A: Math. Gen., 34, 10029.
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Dynamical Properties and Synchronization of Complex Nonlinear
Equations for Detuned Lasers

Tassos Bountis1and G. M. Mahmoud2

1CRANS - Center for Research and Applications of Nonlinear Systems,
Department of Mathematics, University of Patras, Patras, Greece

e-mail address: bountis@math.upatras.gr
2Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt, e-mail

address:gmahmoud@aun.edu.eg

We study the dynamics and synchronization properties of a system of complex nonlinear equations describing
detuned lasers. These equations possess a whole circle of fixed points, while the corresponding real variable
equations have only isolated fixed points. Studying the stability of their equilibrium points, we determine
conditions under which the complex equations have positive, negative or zero Lyapunov exponents and chaotic,
quasiperiodic or periodic attractors for a wide range of parameter values. We investigate the synchronization
of chaotic solutions of our detuned laser system, using as a drive a similar set of equations and applying the
method of global synchronization. We find attractors whose 3–dimensional projection is not at all similar to the
well–known shape of the (real) Lorenz attractor. Finally, we apply complex periodic driving to the electric field
equation and show that the model can exhibit a transition from chaotic to quasiperiodic oscillations. This leads
us to the discovery of an exact periodic solution, whose amplitude and frequency depend on the parameters of
the system. Since this solution is stable for a wide range of parameter values, it may be used to control the
system by entraining it with the applied periodic forcing.

References

Mahmoud G M and Bountis T 2004, The Dynamics of Systems of Complex Nonlinear Oscillators: A Review,
in Int. J. of Bifurcation and Chaos, Vol.14(11), 3821-3846.
Mahmoud G M, Bountis T and Mahmoud E E 2007, Active Control and Global Synchronization of Complex
Chen and Lü Systems, in Int. J. of Bifurcation and Chaos, Vol. 17 (12),4295-4308.
Mahmoud G M, Aly S A and Al-Kashif M A 2008, Dynamical Properties and Chaos Synchronization of a New
Chaotic Complex Nonlinear System, in Nonlinear Dynamics, to appear.
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Classical and quantum transport: from Fourier law to
thermoelectric efficiency

Giulio Casati

Center for nonlinear and complex systems,
Universita’ della Insubria, Como, Italy

The understanding of the underlying dynamical mechanisms which determines the macroscopic laws of heat
conduction is a long standing task of non-equilibrium statistical mechanics. A better understanding of such
mechanism may also lead to potentially interesting applications based on the possibility to control the heat
flow. Of particular interest is the problem, almost completely unexplored, of the derivation of Fourier law from
quantum dynamics. To this end we discuss heat transport in a model of a quantum interacting spin chain and
we provide clear numerical evidence that Fourier law sets in above the transition to quantum chaos. Finally
we consider the transport of particles and heat in open classical ergodic billiards. We show that thermoelectric
efficiency can approach the Carnot limit for sufficiently complex charge carrier molecules.

References
M. Terraneo, M. Peyrard and G. Casati,: ” Controlling the energy flow in nonlinear lattices: a model for a
thermal rectifier” Phys. Rev. Lett.88, 094302 (2002)
G. Casati, and T. Prosen: ”Anomalous Heat Conduction in a Di-atomic One-Dimensional Ideal Gas ” Phys
Rev E. 67, 015203 (2003)
Baowen Li, G. Casati, and Jiao Wang: ”Heat conductivity in linear mixing systems ” Phys Rev E. 67, 021204
(2003).
Baowen Li, Giulio Casati, Jiao Wang, and Tomaz Prosen ”Fourier law in the alternate mass hard-core potential
chain”. Phys. Rev. Lett. 92, 254301 (2004)
Baowen Li, Lei Wang, and Giulio Casati: ”Thermal Diode: Rectification of heat flux”. Phys. Rev. Lett. 93,
184301 (2004)
G. Casati,”Controlling the heat flow: now it is possible” Chaos 15, 015120 (2005)
C. Mejia-Monasterio, T. Prosen and G. Casati, ”Fourier’s Law in a Quantum Spin Chain and the Onset of
Quantum Chaos” Europhysics letters 72, 520 (2005)
Baowen Li, Lei Wang, and Giulio Casati: ”Negative differential thermal resistance and thermal transistor”.
Appl. Phys. Lett. 88, 143501 (2006)
Giulio Casati, C. Mejia-Monasterio and T. Prosen, ” Magnetically Induced Thermal Rectification ” Phys. Rev.
Lett. 98, 104302 (2007)
G. Casati,C. Mejia-Monasterio, and T. Prosen ”Increasing thermoelectric efficiency: a dynamical systems ap-
proach” Phys. Rev. Lett (in press).
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Lecture 1: Hopf’s dynamical vision of turbulence

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

As a turbulent flow evolves, every so often we catch a glimpse of a familiar pattern. For any finite spatial reso-
lution, the system follows approximately for a finite time a pattern belonging to a finite alphabet of admissible
patterns. In “Hopf’s vision of turbulence,” the long term turbulent dynamics is a walk through the space of
such unstable patterns.

In this 3-lecture mini-course we start with a recapitulation of basic notions of dynamics; flows, maps, local
linear stability, heteroclinic connections, qualitative dynamics of stretching and mixing and symbolic dynamics.

In lecture 2 we discuss the discrete and continuous symmetries of 1- and 3-dimensional fluid flows, and in lecture
3 we illustrate the dynamical approach by moderate Re boundary sheer turbulence in the plane Couette flow.

References
J.F. Gibson et al., “Movies of plane Couette,” ChaosBook.org/tutorials
E. Hopf, “A mathematical example displaying features of turbulence,” Commun. Appl. Math. 1, 303 (1948)
B. Hof, C.W.H. van Doorne, J. Westerveel, F.T.M. Nieuwstad, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell
and F. Waleffe, “Experimental demonstration of travelling waves in pipe flow,” Science 305, 1594 (2004)
P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al.,
Chaos: Classical and Quantum, ChaosBook.org
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Lecture 2: Symmetries and dynamics

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

Dynamical systems often come equipped with discrete symmetries, such as the reflection symmetries of various
potentials. Symmetries simplify the dynamics in a rather beautiful way: If dynamics is invariant under a set
of discrete symmetries G, the state space M is tiled by a set of symmetry-related tiles, and the dynamics can
be reduced to dynamics within one such tile, the fundamental domain M/G. If the symmetry is continuous
the dynamics is reduced to a lower-dimensional desymmetrized system M/G, with “ignorable” coordinates
eliminated (but not forgotten). In either case families of symmetry-related full state space cycles are replaced
by fewer and often much shorter “relative” cycles. In presence of a symmetry the notion of a prime periodic
orbit has to be reexamined: it is replaced by the notion of a relative periodic orbit, the shortest segment of the
full state space cycle which tiles the cycle under the action of the group. Furthermore, the group operations that
relate distinct tiles do double duty as letters of an alphabet which assigns symbolic itineraries to trajectories.

Reference
Read chapter “World in a mirror,” of P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al., Classical and
Quantum Chaos, ChaosBook.org
R. Gilmore and C. Letellier, The Symmetry of Chaos (Oxford U. Press, Oxford 2007)
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Lecture 3: Geometry of boundary shear turbulence - a stroll
through 61,506 dimensions

J. F. Gibson, P. Cvitanović and J. Halcrow

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

In the world of moderate Reynolds number, everyday turbulence of fluids flowing across planes and down pipes
a velvet revolution is taking place. Experiments are almost as detailed as the numerical simulations, DNS
is yielding exact numerical solutions that one dared not dream about a decade ago, and dynamical systems
visualization of turbulent fluid’s state space geometry is unexpectedly elegant.

We shall take you on a tour of this newly breached, hitherto inaccessible territory. Mastery of fluid mechanics
is no prerequisite, and perhaps a hindrance: the lecture is aimed at anyone who had ever wondered why - if no
cloud is ever seen twice - we know a cloud when we see one? And how do we turn that into mathematics?

References
J.F. Gibson et al., “Movies of plane Couette,” ChaosBook.org/tutorials
J.F. Gibson, J. Halcrow and P. Cvitanović, “Visualizing the geometry of state space in plane Couette flow,” J.
Fluid Mech. (2008), to appear; arXiv:0705.3957
A. Schmiegel, Transition to turbulence in linearly stable shear flows,
PhD thesis, Philipps-Universität Marburg (1999),
available on archiv.ub.uni-marburg.de/diss/z2000/0062/
B. Eckhardt, A. Schmiegel, H. Faisst and T. Schneider “Dynamical systems and the transition to turbulence
in shear flows,” Phil. Trans. R. Soc (London) (2005) P. Cvitanović, E. Siminos and R. L. Davidchack, “State
space geometry of a spatio-temporally chaotic Kuramoto-Sivashinsky flow,” SIAM J. Applied Dynam. Systems,
submitted; arXiv:0709.2944
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Dynamics of a large population of coupled active and inactive
oscillators

Hiroaki Daido

Department of Mathematical Sciences, Graduate School of Engineering,
Osaka Prefecture University, Sakai 599-8531, Japan

Coupled nonlinear oscillators governed by dissipative dynamics have been studied extensively in the past decades.
Such a system is composed of either limit-cycle oscillators or chaotic oscillators. In particular, much attention
has been paid to a variety of interesting phenomena observed in a large ensemble of such oscillators, e.g.
synchronization transition and clustering. Results of these studies are of significance in diverse areas of science
and technology.

However, there is one point overlooked in such studies, which is the fact that real coupled oscillators, like any
other systems, suffer from some kind of deterioration from the beginning or as time passes. Motivated by this,
we here consider the effect of ”bad components” on the behavior of a population of coupled oscillators, where
a ”bad component” means an oscillator which has lost the ability of performing self-sustained oscillation. Such
a component of the population will be called an ”inactive” oscillator, while a component keeping that ability
an ”active” one. More specifically, we examine what happens in such a system as the ratio of inactive elements
p as well as the coupling strength K are varied. This problem is important, for example, in understanding the
robustness of diverse biological rhythms and in technological contexts, where no system is allowed to be fragile
to defects.

After an introduction, we start from some mathematical models of globally and diffusively coupled oscillators
which are either periodic or chaotic. Here, we encounter such phenomena as aging transition and desynchro-
nization or clustering. We then proceed to the case of locally coupled oscillators to examine what new features
the locality of coupling brings to the system.

References
Daido H and Nakanishi K 2004 Phys. Rev. Lett. 93 art. no. 104101
Nakanishi K and Daido H 2006 Prog. Theor. Phys. Suppl. 161 pp173-176
Daido H and Nakanishi K 2006 Phys. Rev. Lett. 96 art. no. 054101
Pazó D and Montbrio E 2006 Phys. Rev. E 73 art. no. 055202
Daido H 2007 Nonlinear Phenomena in Complex Systems 10 pp72-78
Daido H and Nakanishi K 2007 Phys. Rev. E 75 art. no. 0562067; 76, art. no. 049901(E)
Daido H to be published
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Entropy, Information and Dynamical Systems: mathematical results
and applications

Mirko Degli Esposti

Department of Mathematics
University of Bologna, Bologna, Italy

The discovery that the amount of information in a message (or in any other structure) can be objectively

measured was certainly one of the major scientific achievements of the 20th century (Peter Grass-
berger)

We shall first review the very basic definition of the information theoretic entropy for symbolic sequences,
discussing its main mathematical properties and its close relationship to thermodinamic entropy. Then we like
to discuss the importance of information entropy for chaotic systems and to mention the role that entropy plays
in Bayesan inference (maximum entropy principle).

As we will see, mostly through simple examples, estimating the entropy of a message (text document, picture,
piece of music or biological signal) is quite important because it gives a measure of its compressibility, i.e. the
optimal achievement for any possible compression algorithm. The very basic definitions and classical results
of coding theory will give us the opportunity to understand in simple set up the exact relationship between
entropy and compressibility (Shannon’s (noiseless) coding theorem).

We then turn to relative entropy (also called Kullback-Leibler divergence) that allow us to measure statistical
differences between two distinct sources of information. Our main objective is to discuss its main mathematical
properties and how this quantity can be approximated in practice through a suitable use of everyday (e.g. winzip
or gzip) compression algorithm (Merhav-Ziv’s Theorem).

After a brief presentation of other recent entropy indicators, together with their applications to sequences
generated by chaotic dynamical systems, we conclude discussing how these ideas can be applied to more concrete
situations, such as the problem of authorship attribution for literary text and automatic classification of cardiac
signals.

References
Benedetto D, Caglioti E, Loreto V 2002 Phys. Rev. Lett. 88, 048702 (2002)
Benedetto D, Caglioti E Gabrielli D, 2006 J. Stat. Mech. P09011
T. Cover and J. Thomas, Elements of information theory, Wiley, New York, 1991.
Degli Esposti M, Farinelli C, Menconi G 2007 Chaos and Fractal
Degli Esposti M, Farinelli C , Manca M , Tolomelli A 2007 Journal of Biostatistics 1, 53-78
Grassberger P 2002 arXiv:physics/0207023v1
Haixiao Cai, Kulkarni S.R., Verdu, S. 2004 IEEE Transactions on Information Theory, 50, No. 7, pp. 1551-
1561
Lempel A and Ziv J, 1977 IEEE Trans. Inf. Th. 337-343.
Merhav N, Ziv J, 1993 IEEE Trans. Inf. Th. 39 1280
Puglisi A, Benedetto D, Caglioti E , Loreto V, Vulpiani A 2003 Physica. D 180, no1-2, pp. 92-107
C.E. Shannon, 1948 The Bell System Technical J. 27 623
Shields P 1988 IEEE Transactions on Information Theory, 44, 2079-2073
Shields P 1996 The ergodic theory of discrete sample paths, AMS Graduate Studies in Mathematics, American
Mathematics Society
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Multiplanetary Solar Systems – A Challenge for Astronomy

Rudolf Dvorak

University of Vienna, Inst. for Astronomy, AstroDynamicsGroup

We shall review the structure of the known solar systems with more than one planet. To be able to compare
our own system with the known more than 200 extrasolar planetary system (EPS) we discuss the dynamical
structure of our planets with this interesting separation in an inner system with the four terrestrial planets
and the outer one with the four gasgiants. We also show the new results concerning the longterm stability
(unstability?) over billions of years.

We then discuss the most interesting EPS which are stable although some of them they suffer from quite large
eccentric orbits. In addition we show results of the possible additional – namely terrestrial – planets which
could be interesting from the point of view of searching for other earthlike planets.

References

Dvorak R, Freistetter F and Kurths J (eds.) 2005 Chaos and Stability in Planetary Systems, Lecture Notes in
Physics, vol. 683, (Springer) 279 pages

Dvorak R (ed.) 2007 Extrasolar Planets. Formation, Detection and Dynamics, (Wiley-VCH) 287 pages
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Multiple ionization in strong laser fields

Bruno Eckhardt

Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany

Strong field multiple ionization has puzzled scientists, among other things, because of the strong correlations
among outgoing electrons: their momenta parallel to the polarization axis of the field are very similar. In an
effort to explain this process, we have studied the classical dynamics of two electrons escaping from an attracting
nucleus. This helps to understand the origin of the correlations and suggests a simplified model that captures
the essential process and can be simulated in full quantum calculations.

We find that the repulsion between electrons amplifies deviations from a symmetric escape and thereby enforces
the correlates escape between the electrons. This observation can be exploited to describe many of the observed
properties, to derive a nonlinear threshold law near the onset of double ionization, and to develop a simple
1+1-dimensional model for effective classical and quantum mechanical simulations. Quantum simulations of
this model show good agreement with the classical model, but also reveal fluctuations, which semiclassically
can be understood as interferences from multiple paths leading to double ionization.

The dynamics of the correlations can easily be extended to simultaneous escape of more than two electrons,
and to multiple ionization in molecules.

References
Phys. Rev. A 63, 043414 (2001)
Phys. Rev. A 64, 053401 (2001)
Europhys. Lett. 56, 651–657 (2001)
J. Phys. B: At. Mol. 36, 3923–3935 (2003)
Phys. Rev. A 71, 033407 (2005)
J. Phys. B 39, 3865 (2006)
Phys. Rev. Lett. 98, 203002 (2007)
Phys. Rev. A 77, 015402 (2008)
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Reversibility in many body physics

Bruno Eckhardt

Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany

The classical equations of motion for particles are reversible in that the trajectories are retraced if the velocities
and the direction of time are reversed. This holds true independent of whether the motion is integrable or
chaotic. The difference is noticed, however, in the presence of noise or stochastic forces: then the variances
increase algebraically in the case of an integrable motion and exponentially in the case of a chaotic motion.

GI Taylor has demonstrated the reversibility in the integrable case for a viscous fluid between rotating concentric
cylinders, Chaiken et al has demonstrated the increased stretching in the case of chaotic motions. A classical
analysis is given in Eckhardt (2003).

In a twist to these experiments, Pine et al have recently replaced the colored fluid in these experiments by
micron-sized particles. Because of the small Reynolds numbers involved the dynamics is overdamped and the
dynamics very much dissipative. They noticed that after several oscillations the system self-organizes into one of
two kinds of states: (i) for small amplitudes the particles arrange themselves such that they avoid interactions.
In this state the dynamics is reversible. (ii) for larger amplitudes the particles cannot avoid interations and the
dynamics is irreversible.

We will discuss the equations of motion for a classical particle in a liquid, present simulations that show the
kinds of transitions between the states and discuss evidence for the phase transitions and its critical exponents.

References
L. Corte, PM Chaikin, JP Gollub and DJ Pine, Nature Physics 4, 420 - 424 (2008).
B. Eckhardt, Journal of Physics A: Mathematical and General 36, 371 (2003).
H. Hinrichsen, Adv. Phys. 7, 815 (2000).
G.M. Homsy et al, Multi-media Fluid Mechanics CD, Cambridge University Press 2004
D.J. Pine, J.P. Gollub, J.F. Brady, and A.M. Leshansky, Nature 438, 997 (2005).

for movies, see http://www.physics.nyu.edu/pine/research/hydroreverse.html
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Periodic orbits, localization in normal mode space, and the
Fermi-Pasta-Ulam problem

Sergej Flach

Max Planck Institute for the Physics of Complex Systems
Nöthnitzer Str. 38, 01187 Dresden, Germany

In 1955 Fermi, Pasta and Ulam (FPU) reported on the nonequipartition of a nonlinear atomic chain, with
initially one normal mode excited. Modern computational studies show, that on a first, relatively short, time
scale the energy is distributed among a few neighbouring modes in modal space, with more distant modes being
exponentially weakly excited - i.e., one observes localization in normal mode space. On a much larger second
time scale (which was not reachable wih the MANIAC I), the tail modes are slowly growing, and finally the
system does equilibrate. Despite its strong impact on nonlinear dynamics and statistical physics, the paradox
remained essentially unexplained for decades.

Recent studies show that the model allows for exact time-periodic solutions (q-breathers), which are exponen-
tially localized in the space of normal modes. The trajectory initially computed by FPU is a slight perturbation
away from an exact q-breather orbit. Consequently most of the key observations related to the FPU problem
(localization of energy in normal mode space for long times, recurrence on relatively short times, system size
and energy thresholds) are captured by the properties of q-breathers and the phase space flow nearby. The
underlying concept is much more general, and can be easily extended to two-and three-dimensional finite lat-
tices. In particular, localization properties of q-breathers are shown to depend on intensive control parameters
(energy density, wave vectors) ONLY.

References
S. Flach et al, Am. J. Phys. 76, 453 (2008).
K.G. Mishagin et al, arXiv:0801.1055v1 [nlin.PS].
S. Flach and A. Ponno, Physica D 237, 908 (2008).
T. Penati and S. Flach, Chaos 17, 023102 (2007).
S. Flach et al, Int. J. Mod. Phys. B 21, 3925 (2007).
O. I. Kanakov et al, Phys. Lett. A 365, 416 (2007).
M.V.Ivanchenko et al, Phys. Rev. Lett. 97, 025505 (2006).
S. Flach, M.V.Ivanchenko and O.I.Kanakov, Phys. Rev. E 73, 036618 (2006).
S. Flach, M. V. Ivanchenko and O. I. Kanakov, Phys. Rev. Lett. 95, 064102 (2005).
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Localization Versus Delocalization in Nonlinear Disordered Systems

Sergej Flach

Max Planck Institute for the Physics of Complex Systems
Nöthnitzer Str. 38, 01187 Dresden, Germany

Linear disordered systems allow for Anderson localization. Then all eigenstates are localized, and an initially
localized wave packet will not spread beyond the localization volume of the linear system. Adding nonlinearities
leads to an interaction of eigenstates. The question is therefore, whether the wave packet will spread or stay
localized. I will show that the wave packet can spread in three different regimes. All of them show up with
subdiffusion, while some allow also for partial localization due to selftrapping. The subdiffusive spreading is
universal and characterized by the second moment growing algebraically in time, with exponent 1/3 for one-
dimensional systems with cubic nonlinearity. It is due to a finite number of modes which stay resonant and are
responsible for weak chaos inside the packet.

I will generalize to other types of nonlinearity, higher spatial dimensions, address the spreading in the presence
of a nonzero thermal background, and the corresponding quantum case.
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Self-Organized Criticality in Neuronal Systems*

Theo Geisel

Max Planck Institute for Dynamics and Self-Organization
& Physics Department, University of Göttingen

& Bernstein Center for Computational Neuroscience
D - 37073 Göttingen, Germany

Self-organized criticality is one of the key concepts to describe the emergence of complexity in natural systems.
The concept asserts that a system self-organizes into a critical state where system observables are distributed
according to a power law. It has long been speculated that this phenomenon might also show up in neuronal
networks, but so far no genuinely neuronal model has been shown to exhibit full self-organized criticality.

Here we consider a network of integrate-and-fire neurons with depressive dynamical synapses, i.e. where the
synaptic coupling exhibits fatigue under repeated presynaptic firing [1]. We find self-organized critical avalanches
and show that in a range of interaction parameters this adaptation mechanism drives the network into a self-
organized critical regime by adjusting the average coupling strengths to a critical value. We derive an analytic
expression for the mean synaptic strengths and the average inter-spike intervals in a mean-field approach. These
mean values obey a self-consistency equation which allows us to characterize the self-organization mechanism.
Our theory explains recent experimental results, where neuronal avalanches were observed in multi-electrode
recordings of cortical slice cultures [2].
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Levydemics*

Theo Geisel

Max Planck Institute for Dynamics and Self-Organization & Physics Department, University of Göttingen
& Bernstein Center for Computational Neuroscience

D - 37073 Göttingen, Germany

The efficiency of epidemic modelling and forecasts has suffered in the past from a poor description of the
spatial dynamics. Accurate models are needed e.g. to test potential strategies to control the spread of an
epidemic. While the local infection dynamics is well understood for many diseases, very little was known about
the statistical laws by which humans and their germs disperse. We have tried to improve these models by
introducing Lèvy processes, which allow for superdiffusive spatial dynamics and have carried out an experiment
to verify their applicability.

How can we obtain reliable information on travelling statistics, if people can travel using very different means of
transportation from bikes to planes? We have studied this problem empirically using the dispersal of dollar bills
as a proxy. The time dependent probability density obtained in this way exhibits pronounced spatiotemporal
scaling and anomalous diffusion, which mathematically are described very accurately by our model in terms of
a bifractional diffusion equation with few parameters.
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Thermal convection beyond the Oberbeck-Boussinesq simplification
I

The phenomenon

Siegfried Grossmann

Fachbereich Physik, Philipps-Universität Marburg, Renthof 6, D-35032 Marburg, Germany

These three lectures are based on joint work with the following co-authors:
Detlef Lohse, Francisco Fontenele Araujo, Guenter Ahlers, Eric Brown, Denis Funfschilling,

Kazuyasu Sugiyama, Enrico Calzavarini, and Alexander Esser

An introductory presentation of the basic physics of thermal convection in Rayleigh-Bénard geometry between a
warmer bottom plate and a colder top plate is given. The heat current Q or Nusselt number Nu = Q/(κ∆L−1)
and the amplitude U or Reynolds number UL/ν of the convective flow are considered as functions of the external
control parameters Rayleigh number Ra = βgL3∆/(νκ) and Prandtl number Pr = ν/κ. Recent experimental
progress is discussed in terms of a unified theory (GL 2000, and subsequent papers), based on the exact equations
of motion.

Particular emphasis is put on a currently explored phase space range of very small Pr numbers (cf. Grossmann &
Lohse 2008). It turns out to be strongly turbulent but rather inefficient in heat transport: though Re increases
considerably, the Nusselt number decreases, Nu→ 1, i.e., the heat transport becomes mainly conductive.
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Thermal convection beyond the Oberbeck-Boussinesq simplification
II

Physical signatures of non-OB

Siegfried Grossmann et al.

Fachbereich Physik, Philipps-Universität Marburg, Renthof 6, D-35032 Marburg, Germany

An experimental puzzle, measuring different Nu versus Ra for seemingly the same systems prompted the
discussion how to eliminate systematic errors: side wall leakage, plate resistance corrections, or deviations
from the Oberbeck-Boussinesq approximation. Significant recent progress has in particular been obtained in
measuring and interpreting the signatures of thermal convection, if the temperature dependence of the material
parameters is taken into account, so called non-Oberbeck-Boussinesq (NOB) effects. This turns out to mainly
be a performance of the boundary layers, as was first shown for water and glycerol (cf. Ahlers 2006, Sugiyama
2007). Another interesting example is the RB convection near the critical point of ethane, which gives some
surprising insight into the mechanism leading to NOB effects originating in the strong temperature dependence
of the thermal expansion coefficient β(T ) and/or the heat capacity cp(T ), which mediate the thermal driving
of heat convection (cf. Ahlers 2007, 2008).
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Convection beyond the Oberbeck-Boussinesq simplification
III

Driving by shear

Siegfried Grossmann et al.

Fachbereich Physik, Philipps-Universität Marburg, Renthof 6, D-35032 Marburg, Germany

This third lecture is devoted to recent promising results to explain the momentum (instead of heat) transport
in shear driven flows, making use of similar, successful ideas as have been presented in the first two lectures for
the heat transport in thermal convection. The relevant systems are Taylor-Couette flow between independently
rotating concentric cylinders and turbulent flow through pipes, having angular momentum or axial momentum
transport, respectively. At first also for the momentum transport an introduction into the basic physics of
shear driven flows based on the Navier-Stokes equation is offered, then the relevant global relations are derived,
and finally comparison between theory and the data is provided, which seems quite promising. It turns out
that these shear driven flows are non-Oberbeck-Boussinesq-like from the very beginning, although viscosity ν
is a constant through the liquid here. In contrast, in the shear driven Taylor-Couette system the NOB-like
effects originate from the radius dependence of the driving centrifugal force which is relevant here instead of
the temperature dependence of the material parameters in thermal flow.

The series of lectures is closed by drawing attention to some most urgent but unsolved open questions in the
field, namely plume formation and time dependent boundary layer separation in RB thermal convection, taking
”non-Oberbeck-Boussinesqness” into better account for the torque-scaling in Taylor-Couette flow, and extending
to the large gap case of TC flow.
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Ergodicity and orbit bunching: Universal features of chaos and
their quantum signatures

Alexander Altland, Petr Braun, Fritz Haake, Stefan Heusler, Sebastian Müller

Transregio-Sonderforschungsbereich “Symmetries and Universality in Mesoscopic Systems”, Köln/Bochum/
Duisburg-Essen/München/Warschau

Long periodic orbits of fully chaotic dynamics tend to fill the energy shell with uniform density. As a quantitative
expression of that well-known fact the sum rule of Hannay and Ozorio de Almeida will be discussed.

More recently, it was discovered that long periodic orbits in chaotic systems do not arise as mutually independent
individuals but rather in closely packed bunches. Bunches owe their existence to the fact that each long orbit
displays self-encounters in configuration space where two or more orbit stretches run close together. Along each
orbit, encounter stretches alternate with “links”. Different orbits in a bunch are nearly identical in the links;
these links are differently connected by the encounter stretches. I shall reveal this bunching phenomenon as due
to a certain exponential stability of the Hamiltonian boundary-value problem which in turn is equivalent to the
exponential instability of the initial-value problem of classical mechanics.

Quantum signatures of bunches arise in the semiclassical limit, for all quantities that can be written as sums
of Feynman amplitudes of orbits. When a bunch is so closely packed that the orbit-to-orbit action differences
become of the order of Planck’s constant the Feynman amplitudes interfere constructively. In this way, universal
fluctuations in energy spectra or of transport through mesoscopic conductors arise.

Random-matrix theory (RMT) provides a phenomenological description of universal spectral fluctuations, by
replacing individual Hamiltonians with random matrices and calculating useful indicators (spacing distribution
of energy levels, spectral form factor, . . .) as averages over suitable ensembles of random matrices. Such averages
often give simple analytic results. I shall illustrate the fidelity of chaotic dynamics to RMT with a few examples.
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Semiclassical theory of universal spectral fluctuations for chaotic
dynamics

Alexander Altland, Petr Braun, Fritz Haake, Stefan Heusler, Sebastian Müller

Transregio-Sonderforschungsbereich “Symmetries and Universality in Mesoscopic Systems”, Köln/Bochum/
Duisburg-Essen/München/Warschau

Gutzwiller’s periodic-orbit theory can be used to semiclassically represent the density of energy levels as a
formal sum of contributions of periodic orbits. Similarly, the spectral determinant can be approximated as a
sum over sets of periodic orbits, the so-called pseudo-orbits. All these sums are divergent, due to the exponential
proliferation of periodic orbits with growing period. Only certain correlation functions of such sums can exist
and actually be calculated.

This lecture will outline how the two-point correlator of the level density has recently been determined success-
fully for individual chaotic dynamics, in agreement with the ensemble averages of random-matrix theory. The
correlator results as a sum of a non-oscillatory and an oscillatory term; for the Fourier transform with respect
to the energy, the “spectral form factor”, the two terms mentioned respectively yield the behavior for times up
to the Heisenberg time (0 < t ≤ TH) and larger (TH < t). The two “terms” of the correlator actually arise as
asymptotic series in inverse powers of an energy offset, up to an oscillating exponential factor for the oscillatory
term.

For the non-oscillatory part of the two-point correlator one may start from the product of two Gutzwiller sums
for the level density. The appropriate starting point for capturing the oscillatory part is a certain generating
function, a multiplicative combination of four spectral determinants or their pseudo-orbit representations.

Berry’s diagonal approximation involves pairs of identical orbits and gives the leading terms of the asymptotic
series involved. Higher-order corrections involve bunches of orbits that differ only in reconnections within close
self-encounters.

The contributing orbit bunches look like Feynman diagrams, if close self-encounters are associated with vertices
and the intervening links with propagator lines. The resemblance is not at all fortuitous. If the ensemble averages
of RMT are implemented perturbatively, within the so-called nonlinear sigma model, Feynman diagrams do
uniquely characterize the resulting perturbation series. Each orbit bunch contributing in the semiclassical
theory thus turns out one-to-one with a Feynman diagram of RMT.
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Quantum measurement without Schrödinger cat states

Dominique Spehner and Fritz Haake

Transregio-Sonderforschungsbereich “Symmetries and Universality in Mesoscopic Systems”, Köln/Bochum/
Duisburg-Essen/München/Warschau

A quantum measurement involves an object S and an apparatus; the latter may be idealized to a single-freedom
pointer P interacting with a many-body bath B. The interactions within the three-partite system S⊕P⊕B must
(i) entangle S and P (associating different eigenvalues of the measured object observable with macroscopically
distinct pointer displacements) and (ii) decohere the macroscopically distinct pointer states through the action
of B.

A class of models will be presented which display the behavior just outlined. In particular, emergence and
decoherence of distinct pointer displacements can be allowed to proceed simultaneously such that a mixture of
macroscopically distinct states arises directly, without any intermediate macroscopic superposition.

Special models involving harmonic oscillators allow for rigorous solutions of the Schrödinger equation of S⊕P⊕B.
A much wider model class is amenable to explicit solution in the limit where the time scales for emergence and
decoherence of macroscopically distinct states are small compared to the characteristic times of the free motions
of S,P or even S,P,B.
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Wave Chaos in Rotating Optical Microcavities

Takahisa Harayama

Department of Nonlinear Science, ATR Wave Engineering Laboratories,
Kyoto, Japan

The Sagnac effect is the phase difference between two counter-propagating laser beams in rotating resonators,
originally introduced by Sagnac in 1913. It has become the basis for the operation of the optical gyroscopes such
as ring laser gyroscopes and fiber optic gyroscopes. These optical gyroscopes are normally used in airplanes,
rockets, and ships etc. since they are the most precise rotation velocity sensors among any other types of
gyroscopes.

The Sagnac effect had been theoretically derived for the slender waveguides like optical fibers or the ring
cavities composed of more than three mirrors by assuming that the light propagates one-dimensionally and
the wavelength of the light is much shorter than the sizes of the cavities. However, the sizes of the resonant
cavities can be reduced to the order of the wavelength by modern semiconductor technologies. The conventional
description of the Sagnac effect is not applicable to such small resonant microcavities. Especially, the resonance
wave functions are standing waves which can never be represented by the superposition of counter-propagating
waves, while the assumptions of the existence of CW and CCW waves plays the most important role for the
conventional theory of the Sagnac effect.

By using perturbation theory typically used in quantum mechanics, we show that the Sagnac effect can also be
observed even in resonant microcavities if the angular velocity of the cavity is larger than a certain threshold
where the standing wave resonance function changes into the rotating wave. For a quadrupole cavity, it is not
assumed that the CW and CCW waves exist in the cavity, but the pair of the counter-propagating waves is
automatically produced by mixing the nearly degenerate resonance wave functions due to rotation of the cavity.

We also show that the degenerate eigen-frequency corresponding to the wave-chaotic cavity-mode of the non-
rotaing cavity splits into two frequencies and their difference is proportional to the rotation rate although the
splitting cavity-modes are still wave-chaotic and do not have any corresponding CW and CCW propagating
modes as well as ray-dynamical counterparts, which cannot be explained by the conventional Sagnac effect.
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Quantum Dynamical Semigroup Generators

Hiroshi Hasegawa

Institute of Quantum Science, College of Science and Technology
Nihon University, Tokyo 101-8308

We discuss a construction of quantum dynamical semigroup, and show
(a) derivation of its generator from operator stochastic differential equation, (b) relation between dissipation and
contraction of the semigroup and (c) quantum detailed balance.

1. Quantum stochastic differential equation

This is a quantum (i.e. noncommutative) analogue of ordinary stochastic differential equation which was
initiated by K.Itô[2], and can be formulated by using the so-called stochastic calculus in parallel with the
commutative framework.

Y ◦ dX = Y · dX +
1
2
dY DX ◦ dX · Y +

1
2
dXdY (1)

where the former and the latter expressions must be distinguished for the reason of noncommutativity Y ◦dX 6=
◦(dX)Y . Also,

Z ◦ (Y ◦ dX) = ZY ◦ dX (2)

and
df(X) =

df

dX
◦ dX =

df

dX
dX +

1
2
d2f(X). (3)

The simbol ◦ was introduced by Itô [2] for distinguishing between the two Fokker-Planck equations of Itô and
Stratonovich(see [1]).

2. Stochastic Schroedinger and stochastic Heisenberg equation

We show a more concrete incorporation of the stochastic element into the ordinary quantum dynamics: our
purpose is to ellucidate how statistical feature dissipativeness can be formulated on the basis of three rules
summarized by eq.(1), eq.(2) and eq.(3). The result can be shown in terms of quantum dynamical semigroup
and its generator as follows.

Xt = ΛtX ≡ etLXt=0 (4)

where Λt is a superoperator acting on the space of operators for a given quantum system.
In the above, the superoperator L in Λt is called generator of the (quantum) dynamical semigroup.

3. Condition of detailed balance

Let us recall the classical description of detailed balance condition[9] expressed as

Σl
∂a−1

il bl
∂xj

= Σl∂a−1
jl bl∂xi, (5)

where
∂p(t, x)
∂t

− ∂

∂xi
(−bi(x)p(t, x)p(t, x) +

1
2
∂

∂xj
(aij(x)

∂

∂xi
aij(x)p(t, x) (6)

in terms of drift vector bi(x) and diffusion tensor element aij(x)(= aji(x)). Then, the detailed balance condition
is given by eq.(5) [9].

A possible quantum mechanical detailed balance condition can be formulated based on (i) existence of the
equilibrium density operator ω which is unique (ii) the set of unitary time evolutions Σt ≡ {Ut;−∞ < t <∞}
commutes with the semigroup generator L defined in eq.(4).

The details of the above feature will be presented.
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[2] K Itô 1975 Lecture Notes in Physics 39 218

[3] R Bhatia 1907 Matrix Analysis (Springer Verlag, Berlin)

[4] R L Hudson and K R Parthasarathy 1984 Commun. Math. Phys. 93 301

[5] G Lindblad 1976 Commun. Math. Phys. 48 119

[6a] K Kraus 1970 Ann. Phys. 64 311;

[6b] Størmer 1974, Lecture Notes in Phys. 29 85

[7] D Petz 2002, J. Phys. A: Math. Gen. 35 929

[8] R L Stratonovich 1968, Conditional Markov processes and their applicationsto optimal control (Elsevier, New
York)

[9] R Graham and H Haken 1971, Z. Physik 243 283

[10] R Alicki 1976, Rep. Math. Phys. 10 249

[11] H Hasegawa and T Nakagomi, J. Stat. Phys. 23 639

28



Asymmetric Heat Conduction in Nonlinear Systems

Bambi Hu
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and

Department of Physics, University of Houston, Houston,
TX 77204-5005, USA

Heat conduction is an old yet important problem. Since Fourier introduced the law bearing his name two
hundred years ago, a first-principle derivation of this law from statistical mechanics is still lacking. Worse still,
the validity of this law in low dimensions, and the necessary and sufficient conditions for its validity are still far
from clear. In this talk I’ll give a review of recent works done on this subject. I’ll also report our latest work on
asymmetric heat conduction in nonlinear systems. The study of heat condution is not only of theoretical interest
but also of practical interest. The study of electric conduction has led to the invention of such important electric
devices such as electric diodes and transistors. The study of heat conduction may also lead to the invention of
thermal diodes and transistors in the future.
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Semiclassical assignment of highly excited molecular vibrations

Christof Jung

Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico
Cuernavaca, Mexico

We present a method to treat highly excited molecular vibrations of small polyatomic molecules. We start
from an algebraic Hamiltonian either fitted to the experimental spectrum or constructed from a given potential
surface. Its classical counterpart H has several very favorable properties: It has a natural decomposition into an
integrable H0 and resonant interactions W . The whole Hamiltonian is automatically given in the action/angle
variables belonging to H0. The configuration space of the system is the angle space. Polyad type conserved
quantities allow a reduction of the number of degres of freedom.

If some of the modes are involved in several independent resonances, then the system is nonintegrable and in
many cases shows chaos in large parts of the classical phase space.

First we study the various coupling schemes possible by the functional form of W and the corresponding orga-
nization centers in configuration space. Then we construct a semiclassical representation on the configuration
space of the eigenstates of the quantum problem and compare them with the organization centers of the various
coupling schemes. For the large majority of states we thereby see to which coupling scheme they belong. By
counting nodal patterns and phase advances of the semiclassical wave functions we get quantum numbers rela-
tive to the respective organization center. As principal example DCO is used. Other examples are mentioned
briefly.

The success of this method for systems with a complicated spectrum and with classical chaos poses interesting
questions on quantum chaology. Finally we make some suggestions for a possible answer of this question.
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Spatial network representation of complex living tissues

Dean Korošak1 and Marjan Rupnik2

1CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Maribor, Slovenia

2Faculty of Medicine,
University of Maribor, Maribor, Slovenia

Complex network theory has recently attracted large attention across several scientific disciplines as it can
be used to describe very diverse systems from the network perspective. In this approach the elements of the
system are represented by vertices and interactions between the elements by edges or links connecting the
vertices. We shall first review the basic elements of network theory focusing on the scale-free networks and
spatially embedded scale-free networks in particular. We shall introduce and discuss some of the algorithms for
constructing networks with scale-free architecture.

Following this, we will present a network approach to explore the relationship between structure and function
in biological systems, concentrating on the case of pancreatic islets of Langerhans. We will describe a structure
of an intact living islet of beta cells as a scale-free complex system using a fitness network model embedded in
Euclidean space. The connectivity between two beta cells in the model is the function of the spatial localization
and conductance between these cells. Both quantities have been experimentally determined in intact pancreatic
islets. Several computed properties of the networks representing the intact pancreatic islets will be presented
such as degree distributions, degree correlations and centrality. We shall argue that by analyzing spatial network
models of pancreatic islets we can progress our understanding of the interrelation between the structural code
and functional connections inside living pancreatic islets.
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Magnetic domain patterns under an oscillating field

Kazue Kudo and Katsuhiro Nakamura1,2
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Magnetic domain patterns show various kinds of structures under a magnetic field. Especially under an os-
cillating field, one can observe interesting domain patterns such as square/hexagonal lattices, travelling stripe
patterns, spirals, concentric circles, etc.

We discuss domain patterns in a ferromagnetic thin film under an oscillating field. The domain patterns consist
of up-spin and down-spin clusters. We consider domain patterns with a constant characteristic width. The
characteristic width is determined by the balance between the exchange interactions (short-range attractive
interactions) and the dipolar interactions (long-range repulsive interactions). We use a simple two-dimensional
Ising-like model including those interactions in order to simulate various kinds of domain patterns and discuss
the characteristics and mechanism of the patterns.

Under some conditions, lattice patterns are observed in both experiments and numerical simulations. We show
numerical simulations of some kinds of lattice patterns. The type of a lattice (i.e. square or hexagonal) depends
on the amplitude and frequency of an oscillating field. We also show the numerical simulation of a travelling
stripe pattern. In fact, travelling patterns can be observed in experiments. We discuss the mechanism and
instability of a travelling pattern. Furthermore, we will also discuss more interesting patterns like spirals and
concentric circles.
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Spatio-temporal modelling of intracellular Ca2+ oscillations

Marko Marhl
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In many non-excitable eukaryotic cells Ca2+ oscillations play a key role in intra and intercellular signalling, thus
regulating many cellular processes from fertilization to death (Berridge et al., 1998). Mathematical modelling
of Ca2+ oscillations is of particular importance for understanding the mechanisms underlying these oscillations,
and consequently understanding how they may be regulated. The experiments in hepatocytes show that when
net plasma membrane Ca2+ efflux is reduced, and hence the total concentration of Ca2+ in the cell increases,
the frequency of Ca2+ oscillations increases as well, but importantly, the width of the spikes remains constant
(Green et al., 1997, 2002, 2003). The existing mathematical models (for review see Schuster et al., 2002) were
not able to explain this phenomenon. We show that these experimental observations can be best explained by
taking into account not only the temporal, but also the spatial dynamics underlying the generation of Ca2+

oscillations in the cell (Marhl et al., 2008). Here we divide the cell into a grid of elements and treat the Ca2+

dynamics as a spatio-temporal phenomenon. Thus converting an existing temporal model into a spatio-temporal
one delivers results that are in much better agreement with experimental observations.
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Wave turbulence in superfluid 4He: energy cascades and rogue
waves in the laboratory
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McClintock1

1Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

2Institute of Solid State Physics RAS, Chernogolovka, Moscow 142432, Russia

A highly excited state of a system with numerous degrees of freedom, characterized by a directional energy flux
through frequency scales, is referred to as turbulent. Like the familiar manifestations of vortex turbulence in
fluids, turbulence can also occur in systems of waves, e.g. turbulence of sound waves in oceanic waveguides,
magnetic turbulence in interstellar gases, shock waves in the solar wind and their coupling with Earth’s magne-
tosphere, and phonon turbulence in solids. Following the ideas of Kolmogorov, the universally accepted picture
says that nonlinear wave interactions give rise to a cascade of wave energy towards shorter and shorter wave-
lengths until, eventually, it becomes possible for viscosity to dissipate the energy as heat. Experiments and
calculations show that, most of the time, the Kolmogorov picture is correct. We have found, however, that this
picture is incomplete. Our experiments with second sound waves in superfluid 4He show that, contrary to the
conventional wisdom, acoustic wave energy can sometimes flow in the opposite direction.

We shall review briefly the necessary background in turbulence and superfluidity, discussing why superfluid 4He
is an ideal medium for modelling wave turbulence in the laboratory. Then we will report recent results and
discuss their implications in physics and in relation to possible applications such as rogue waves on the ocean.
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Clustering of inertial particles in turbulent flows

B. Mehlig1) and M. Wilkinson2)

1)Department of Physics, Göteborgs universitet, Gothenburg, Sweden
2)The Open University, Milton Keynes, England

We consider particles suspended in a randomly stirred or turbulent fluid. When effects of the inertia of the
particles are significant, an initially uniform scatter of particles can cluster together. We analyse this ‘unmixing’
effect by calculating the Lyapunov exponents for dense particles suspended in such a random three-dimensional
flow, concentrating on the limit where the viscous damping rate is small compared to the inverse correlation
time of the random flow (that is, the regime of large Stokes number). In this limit Lyapunov exponents are
obtained as a power series in a parameter which is a dimensionless measure of the inertia. We report results for
the first seven orders. The perturbation series is divergent, but we obtain accurate results from a Padé-Borel
summation. We infer that particles can cluster onto a fractal set and show that its dimension is in satisfactory
agreement with previously reported results from simulations of turbulent Navier-Stokes flows [Bec et al. 2006].
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Relative speeds of inertial particles at large Stokes numbers

B. Mehlig1) and M. Wilkinson2)

1)Department of Physics, Göteborgs universitet, Gothenburg, Sweden
2)The Open University, Milton Keynes, England

We discuss the probability distribution of relative speed ∆V of inertial particles suspended in a highly turbulent
gas when the Stokes numbers, a dimensionless measure of their inertia, is large. We identify a mechanism giving
rise to the distribution P (∆V ) ∼ exp(−C|∆V |4/3) (for some constant C). Our conclusions are supported by
numerical simulations and the analytical solution of a model equation of motion. The results determine the
rate of collisions between suspended particles.
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Synchronization in large networks of coupled phase oscillators: the
effect of network topology

Edward Ott

Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, Maryland 20742

Synchronization of large systems of coupled oscillators is a basic issue in settings ranging from brain function, to
electrical circuits, to laser arrays, etc. This lecture will begin with a review of the paradigmatic Kuramoto model
of globally coupled phase oscillators where each oscillator has a different intrinsic frequency drawn from some
prescribed probability distribution function [Ott 2002]. We then introduce concepts of network connectivity
and formulate the problem of phase oscillators coupled on a network. The problem is analyzed in three stages
of approximation. It is found that the effect of network topology on synchronization is mainly characterized
by the largest eigenvalue λ of the network adjacency matrix. Based on this, one can assess the influence upon
synchronizability of such network attributes as diversity in the number of connections to network nodes, spread
in the link strengths, and the tendency for highly connected nodes to connect to other highly connected nodes
(assortativity).
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Emergence of collective behavior in large networks of coupled
heterogeneous

dynamical systems

Edward Ott

Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, Maryland 20742

After a review and introduction of the subject, this lecture will be devoted to investigations of large systems
of coupled heterogeneous dynamical systems. The first part of the lecture will deal with how interactions
with external drivers influence the dynamics. Examples in this category include the interaction of the walking
dynamics of pedestrians on London’s Millennium Bridge that lead to unexpected violent oscillations of the
bridge [Strogatz et al 2005, Eckhardt et al 2007] circadian rhythm governing the sleep-awake cycle of animals
through the coupling of many oscillatory neurons in the brain’s superchiasmatic nucleus influenced by the daily
24 hour variation of sunlight [Antonsen et al], etc. The second part of the talk will be devoted to the study
of systems of many coupled heterogeneous dynamical systems, including cases where the coupled systems can
be chaotic. As the coupling strength is increased, a transition from incoherent to coherent collective behavior
is typically observed. A general theory for this transition will be presented [Ott et al 2002, and Baek and Ott
2004]. An important point is that the macroscopic (i.e., averaged) system behavior is typically periodic even
if the systems that are coupled behave chaotically. We present a treatment for the case of global coupling and
then indicate how it can be generalized to situations with nontrivial network topology [Restrepo et al 2006].
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Estimating the state of large spatiotemporally chaotic systems,
weather forecasting, etc.

Edward Ott

Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, Maryland 20742

State estimation is a general requirement for controlling a system or for predicting its future evolution., In
this talk we will address the problem of estimating the state of a large spatiotemporally chaotic system from
limited noisy measurement data and a a knowledge of a system model. For large systems, state estimation can
be particularly challenging because straightforward application of the conventional techniques is typically not
feasible due to computational limitations. This problem has very general interest, e.g., for weather forecasting,
etc. This talk will present background material, a proposed solution for treating large systems, and illustrative
results from application of our technique to weather forecasting and to a laboratory experiment.
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The Limits of Some Infinite Families of Complex Contracting
Mappings

Dušan Pagon

Faculty of Natural Science and Mathematics,
University of Maribor, Maribor, Slovenia

The idea of self-similarity is one of the most fundamental in modern mathematics. The notion of renormalization
group, which plays an essential role in quantum field theory, statistical physics and dynamical systems, is related
to it. Many fractal and multi-fractal objects, playing an important role in singular geometry, measure theory
and holomorphic dynamics, are related. Self-similarity also appears in the theory of C∗-algebras (for example
in the representation theory of the Cuntz algebras) and in many other branches of mathematics. For the last
25 years the idea of self-similarity demonstrates a growing influence on asymptotic and geometric group theory.

A compact set F in a metric space is called self-similar (in a strong sense) with a similarity coefficient p, when
it can be divided into N congruent sets, each of which is exactly p-times smaller copy of the original set. Our
main purpose is a new approach to a broad class of planar fractal sets. We discuss some strongly selfsimilar sets
of points in the complex plane, obtained as geometric limits of certain infinite families of contracting mappings
(homotheties with q = 1

p < 1). Some well known fractal sets (like the Sierpinski gasket) are included in this
class, but generally new planar fractal sets appear, that have not been studied before.

For an arbitrary stretching factor r ∈ (0, 1) and a positive angle ϑ < π we define an infinite family of bijective
affine mappings of the complex plane, consisting of a rotation of the plane (for a certain multiple of the angle
ϑ) with the appropriate stretching (for the related power of factor r) and some translation. Starting with a
unit segment we repeatedly use this iterated functions system on it. The limiting set of points is under certain
conditions in a 1–1 corespondence with the initial unit interval on the real axis.
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Cyclical interactions, defensive alliances, and the Phoenix effect

Matjaž Perc

Department of Physics, Faculty of Natural Sciences and Mathematics,
University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

Cyclical interactions are simple yet fascinating and powerful examples of evolutionary processes, able to provide
insights into the intriguing mechanisms of Darwinian selection [1] as well as structural complexity [2] and pre-
biotic evolution [3]. The simplest non-trivial food web describing such cyclical interactions is formed by three
species that have relationships analogous to the well-known rock-scissors-paper (RSP) game, where strategies
form a closed loop of dominance.

We will first outline some general properties of the RSP game and present Monte Carlo simulations that will
help us to get familiar with the basic premise of cyclical interactions. Next, an extension of the basic RSP game,
given in the form of a six species model (or food web) will be presented. We will show that the more complex
version, supplemented also by heterogeneous invasion rates [4], exhibits many interesting features that can be
encountered in the human and animal world. Besides cyclical interactions as the basic ingredient, we will also
show and explain the existence of defensive alliances, demonstrate the Phoenix effect, as well as noise-guided
evolution [5].

Finally, we will also link the subject with evolutionary game theory [6] and present our recent results showing
that static [7] and dynamic [8, 9] stochastic inputs may play a decisive role in determining the evolutionary
success of participating strategies. Interested individuals are kindly invited to write me an email? or visit my
homepage† to learn more about the subject.
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Virtual Volatility

Richard E. Prange, A. Christian Silva

Physics Department, University of Maryland, College Park, Md 20742

A basic investment strategy is: Buy a stock (or portfolio of stocks) at price S0 at time t = 0 intending to sell
it a ‘year’ later at time t = T at a higher price ST . A widely adopted semirealistic model for ‘predicting’ stock
prices is the random walk. Then the price changes ‘daily’ by a small fraction dsn = (S(n+1)dt − Sndt)/Sndt =
µdt+ σ

√
dtWn where dt = T/N, (N >> 1) and Wnis random with zero mean and unit variance. The Central

Limit Theorem then shows that the predicted probability distribution function (PDF) of (log) returns RT =
ln(ST /S0) is approximately normal (Gaussian). The center of the PDF is the ‘expected’ return µT = Nµdt,
The PDF’s width, σT =

√
Ndtσ. is a version of the volatility, commonly but incorrectly equated to the risk.

Modern Portfolio Theory, MPT,and the Capital Assets Pricing Model CAPM, still in every textbook, make the
ridiculous assumption that every market participant knows and indeed agrees on the ‘true’ values of µT and σT
for each and every portfolio of stocks. Because there is just one exemplar, this PDF cannot be measured, even
when time T is history. Nevertheless, we agree that the shape is roughly normal. We argue that σT is known
with maybe 20% accuracy and typically is in the range 10%-100%. In contrast, µT is only crudely estimated,
e.g. µT ≈ .5σT ± σT . This triviality implies what is obvious to us, but not to economists, that the actual
uncertainty σTV of an investor’s predicted return PDF is larger than the random walk (CAPM or Black-Sholes)
width, because of inabiity to predict well the expected return parameter µT . We call this corrected width the
virtual volatility VV.

We estimate the size of the effect empirically and find that σTV ≈ 1.3σT . We also confirm the normality of
the PDF of returns. Remarkably, for a random walk with fixed but unknown parameters, there is a bigger
VV effect, σTV = 1.45σT . Our result is evidence of a market ‘anomaly’, a breakdown of the efficient market
hypothesis, something not routinely accepted by most academic economists: The simple random walk must be
replaced by a mean reverting random walk. We extract from the data an empirical time to revert to the mean
of about 15 months.

The VV also has dramatic consequences on the choice of optimal investment vehicle. While the VV effect
obviously reduces the advisability of buying a stock directly, the extra uncertainty actually improves the strategy
of buying calls on the underlying stock. Thus, in this case, uncertainty can be a good thing, confirming the
adage ignorance is bliss!

42



Third quantization: a general method to solve master equations for
quadratic open Fermi systems

Tomaž Prosen

Faculty of Mathematics and Physics - Department of Physics
University of Ljubljana, Ljubljana, Slovenia

In this lecture we shall outline a general approach to explicit solution of quantum Liouville equations for open
many-body systems out of equilibrium [1].

Using the concept of quantization in the Fock space of operators, the Lindblad master equation for an arbitrary
quadratic system of n fermions shall be solved explicitly in terms of diagonalization of a 4n×4n matrix, provided
that all Lindblad bath operators are linear in the fermionic variables [1].

As an example, the method is applied to the explicit construction of non-equilibrium steady states and the
calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in
a nearest neighbor Heisenberg XY spin 1/2 chain in a transverse magnetic field. Furthermore, we find and
demonstrate a novel type of far from equilibrium quantum phase transition with spontaneous emergence of
long-range order in spin-spin correlation functions [2].
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[2] Prosen T and Pižorn I 2008 preprint arXiv:0805.2878

43



Quantum chaos in many-body systems

Tomaž Prosen

Faculty of Mathematics and Physics - Department of Physics
University of Ljubljana, Ljubljana, Slovenia

Several approaches to general characterizations of non-integrable interacting many-body systems shall be re-
viewed [1]. We shall focus on quantum spin 1/2 chains as a particular convenient class of generic systems and
outline several dynamical signatures of (non)integrability, employing concepts from random matrix theory (see
e.g. [2]) and from quantum information theory (see e.g. [3, 4]). In particular we shall discuss (i) energy level
statistics and (generalized) quantum chaos conjecture [5], (ii) decay of dynamical correlation functions with
equilibrium relaxation rates as quantum analogues of Ruelle resonances [1], and the relation to quantum trans-
port problem in non-equilibrium statistical mechanics [6], (iii) algorithmic complexity, entanglement production
and the efficiency of classical simulations of quantum dynamics [7], and (iv) computation of quantum dynamical
entropies [1].

These criteria and their ranges of validity will be discussed and compared, and sometimes quite surprising
conclusions are found. Some conjectures and open problems in the ergodic theory of the quantum many
problem shall be suggested.
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Dynamics of Loschmidt echoes and fidelity decay

Tomaž Prosen
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University of Ljubljana, Ljubljana, Slovenia

Fidelity serves as a benchmark for the reliability in quantum information processes, and has recently attracted
much interest as a measure of the susceptibility of general dynamics to external perturbations. A rich variety
of regimes for fidelity decay have emerged. In this lecture we shall review some of the most important regimes,
and outline the theory that supports them [1]. While we mention several theoretical approaches we use time
correlation functions as a backbone for the discussion. Recent experiments in micro-wave cavities and in
elastodynamic systems as well as suggestions for experiments in quantum optics shall be discussed.
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Topology and chaos

Dušan Repovš
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In this lecture we shall illustrate, by means of examples, how certain methods of modern geometric topology
can be used to construct very interesting and diverse examples in chaos:

(i) Using a classical example from 1930’s, due to J. H. C. Whitehead, of an open contractible 3-manifold which
fails to be R3, we shall see how the corresponding ”continuum at infinity” arises as a chaotic local attractor for
a special self-homeomorphism of R3.

(ii) Using interval mappings, we shall demonstrate that every inverse limit space of such mappings can be
realized as a global attractor for a homeomorphism of R2.

(iii) Using Borsuk’s shape theory, we shall show how one can get a compactum (a certain one-dimensional space
called a ”solenoid”) which cannot be an attractor of any self-map of a topological manifold.

(iv) Using forcing of periodic points in orientation-reversing twist maps of the plane (for example, the Hénon
maps), we shall show that an orientation-reversing twist map can be written as the composition of four
orientation-preserving twist maps.

(v) Applying the Conley index to the dynamics of f , we shall show that period-4 points can be divided into two
types and prove that if f is a diffeomorphism, then the existence of a point of type I implies that there exists a
compact invariant subset Λ ⊂ R2 such that f |Λ has positive topological entropy.
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Chaotic motion in rigid body dynamics

Peter H. Richter
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University of Bremen, Bremen, Germany

The theory of rigid body motion in a gravitational field has a long history. It is intimately connected with
the names of Leonard Euler, Joseph Louis de Lagrange, and Sophia Kovalevskaya – each of them identified an
integrable family of bodies which now carry their names. The beautiful mathematics of elliptic and hyperelliptic
functions was developed in that connection, but little attention was given to the fact that the overwhelming
majority of rigid body problems is non-integrable: their typical dynamics is more or less chaotic.

The lecture will outline the nature of the problem and the strategy of its investigation. First we must take into
account that realistic rigid bodies need a device to fix a point which is not the center of gravity – a Cardan
suspension for example. The configuration space is then no longer SO(3) where Euler’s angles or Euler’s elegant
variables may be used as coordinates, but a 3-torus of Cardan angles. Two other implications are that (i)
the set of all these physical systems has (at least) six essential parameters and (ii) the six-dimensional phase
space is not always reducible to four dimensions because no component of the angular momentum needs to be
conserved. In principle this requires to analyze motion on five-dimensional iso-energy surfaces.

We shall restrict the discussion to cases where at least one component of the angular momentum is conserved
so that the motion can be studied on three-dimensional energy surfaces. A first step to get an overview is
to identify bifurcation diagrams in the space of conserved quantities (energy and angular momentum), and to
determine the topological nature of the various energy surfaces. This is done by looking at the critical points
of an effective potential on the reduced configuration space which we call Poisson torus (rather than Poisson
sphere). No further analytical work seems to be possible in general; the rest must be done in terms of Poincaré
sections.

It is not trivial to define a “good” 2-D surface of section that (i) captures every trajectory on a given energy
surface and (ii) may be represented in projection to the Poisson torus. I will report on the state of affairs and
present examples.
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New trends in quantum chaos of generic systems

Marko Robnik
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University of Maribor, Maribor, Slovenia

First I shall briefly review the basic elements of the stationary quantum chaos in Hamiltonian systems, the
universality classes of energy spectra and eigenfunctions. Then I shall consider the problem of the generic
systems whose classical dynamics and the phase portrait is of the mixed type, i.e. regular for certain initial
conditions and irregular (chaotic) for other initial conditions. I shall present the so-called Berry-Robnik picture,
the Principle of Uniform Semiclassical Condensation (of the Wigner functions of the eigenstates), and the
statistical description of the energy spectra in terms of E(k,L) statistics, which is known and shown to be valid
in the semiclassical limit of sufficiently small effective Planck constant and is numerically firmly confirmed.
Then I shall show the numerical evidence for the deviations from that prediction in mixed type systems at low
energies, due to localization and tunneling effects. The most recently developed random matrix model will be
shown to apply in this regime, as it is in very good agreement with numerical and experimental data on the
so-called mushroom billiards of Bunimovich. Here are also the important open theoretical questions that I shall
address.
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Stöckmann H.-J. 1999 Quantum Chaos: An Introduction, Cambridge University Press, Cambridge
Robnik M 1998 Nonlinear Phenomena in Complex Systems (Minsk) 1 1
Berry M V and Robnik M 1984 J. Phys. A: Math. Gen. 17 2413
Gomez J M G, Relano A, Retamosa J, Faleiro E, Salasnich L, Vraničar M and Robnik M 2005 Phys. Rev. Lett.
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Vidmar G, Stöckmann H.-J., Robnik M, Kuhl U, Höhmann R and Grossmann S 2007 J.Phys.A: Math.Theor.
40 13883
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Exact analysis of the adiabatic invariants in time-dependent
harmonic oscillator

Marko Robnik

CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Maribor, Slovenia

The theory of adiabatic invariants has a long history, and very important implications and applications in many
different branches of physics, classically and quantally, but is rarely founded on rigorous results. It began with
the classical paper by Einstein in 1911, following a suggestion by Lorentz in the same year. We treat the
general one-dimensional harmonic (linear) oscillator with time-dependent frequency whose energy is generally
not conserved, and analyse the evolution of the energy and its statistical properties, like the distribution function
of the final energies evolved from an initial microcanonical ensemble. This distribution function turns out to be
universal, i.e. independent of the nature of the frequency as a function of time. The theory is interesting from
the mathematical point of view as it comprises elements of the theory of dynamical systems, the probability
theory and discrete mathematics, and sheds new light on the understanding of the adiabatic invariants in
nonautonomous dynamical systems.
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Computational algebra and some applications
to differential equations
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Consider a system of polynomials

f1(x1, . . . , xn) = 0, ..., fs(x1, . . . , xn) = 0. (7)

The set of all solutions to (1) is called the variety. There are numerical algorithms for solving non-linear
systems such as (1). These algorithms solve for one solution at a time, and find an approximation to the
solution. They ignore the geometric properties of the solutions space (the variety), and do not take into
consideration possible alternate descriptions of the variety (using a different system of polynomials). However
recently efficient computational algorithms have been developed which enable us to get algebraic and geometric
information about the entire solution space of system (1). They are based on the Gröbner bases theory worked
out by B.Buchberger around the middle of 60th of last century.

In the lecture we sketch main ideas of the Gröbner bases theory and discuss some algorithms implemented in
computer algebra systems (such as Mathematica, Maple and Singular). We consider applications of Gröbner
bases to solutions of systems of polynomial equations and to elimination of variables in such systems. We also
present a few applications of the algorithms to the study of some problems of the theory of ordinary differential
equations.
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Self-organized quasiperiodicity in oscillator ensembles with global
nonlinear coupling

Michael Rosenblum and Arkady Pikovsky

Department of Physics,
University of Potsdam, Potsdam, Germany

In the classical sense, synchronization of coupled oscillating systems means appearance of certain relations
between their phases and frequencies due to weak coupling. After giving brief introduction into the classical
theory we review the recent results on self-synchronization in large enesembles of all-to-all interacting units. We
discuss experimental examples and the theoretical treatment of the Kuramoto model.

Next, we consider new effects which can appear if the coupling between oscillators is nonlinear in the sense that
response of an individual oscillator to a strong driving cannot be taken simply as an “upscaled” response to a
weak driving. We formulate a mininal model for am ensemble of nonlinearly coupled oscillators. This model is
a generalization of the Kuramoto model. Furthemore, we demonstrate a transition from fully synchronous peri-
odic oscillations to partially synchronous quasiperiodic dynamics. We present an analytic solution of the model
that explains the regime where the mean field does not entrain individual oscillators, but has a frequency incom-
mensurate to theirs. The self-organized onset of quasiperiodicity is illustrated with Landau-Stuart oscillators
and a Josephson junction array with a nonlinear coupling.
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Some Basic Facts about Logical Circuits

Andreas Ruffing
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University of Maribor, Maribor, Slovenia

This talk is mainly on the pedagogical side of the conference and hence shall also and in particular address all
the students attending. Special effect: The intention is to perform also an electric show-experiment, namely
Edisons effect, during the talk.
Let us come to the motivation of the topic: In difference equations and discrete dynamical systems theory,
the last ten years stood under an impressive sign: Extending results from autonomous difference equations to
non-autonomous ones.
Discrete dynamical systems which have only 0 and 1 as a value, may be interpreted as migrating signals of
a logical system in which different operations are possible: These operations are the logical circuit operations
AND, OR, NOT.
We review main facts of the elementary operations AND, OR, NOT and see how mathematical modelling of a
logical circuit works. We will learn about maxterms, minterms and explore an important representation theo-
rem: There is only one kind of logical operator necessary to describe all finite systems of logical circuits: This
is the NOR operator. Alternatively a similar representation theorem holds for NAND operators.
All the circuits considered so far are autonomous ones: The same initial signal constellation at the entries of a
system leads always to the same results, independent from the position on the time axis.
In the last part of the talk, will we learn about the non-autonomous scenario of RS-logical circuits which allow
to store signals and therefore to store information.
In the whole talk, the corresponding physical realization of a logical operator will be presented: Starting from
Edisons effect and ending up with modern semiconductor devices.
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Transport and localization of Bose-Einstein condensates in disorder

Peter Schlagheck

Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

In my talk, I will present our research activities on transport processes of interacting Bose-Einstein condensates
in dimensionally restricted disorder potentials. We study these processes by numerically integrating the Gross-
Pitaevskii equation with an external source that simulates the quasi-stationary injection of coherent matter
waves onto the disorder region. For the case of one-dimensional disorder potentials, we find that the interaction
between the atoms leads to a cross-over from an exponential to an algebraic decrease of the average transmission
with the disorder length, which represents a significant deviation from the scenario of Anderson localization.
For two-dimensional disorder potentials, the presence of interaction reverts the phenomenon of weak localization
and leads to a cone-shaped dip, instead of a peak, in the angle-resolved current of backscattered atoms. Our
numerical findings are corroborated by analytical approaches based, in the 1D case, on transfer-matrix-type
methods and, in the 2D case, on nonlinear diagrammatic perturbation theory.
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Solution of Mixed Problem for Elliptic Equation by Monte Carlo
and Probability–Difference Methods

Kanat Shakenov

KazNU - Kazakh National University,
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We consider the following problem in domain Ω ∈ Rn with border ∂Ω

Du(x) ≡ ∂

∂xi

(
aij(x) · ∂u(x)

∂xj

)
+ bi(x) · ∂u(x)

∂xi
+ c(x) · u(x) = f(x), in Ω, (8)

∂u(x)
∂η

+ d(x) · u(x) = ϕ(x) on ∂Ω, (9)

where ∂u(x)
∂η = aij(x) · ∂u(x)

∂xj
· cos(~n, xi). [1].

Coefficients of the operator D and d(x) ≥ 0 are the limited functions, f(x) ∈ H(Ω). Where H(Ω) ≡ L2(Ω). At
anyone real ξ0, ξ1, . . . , ξn the inequality

aij(x)ξiξj − bi(x)ξiξ0 − c(x)ξ2
0 ≥ α

n∑
i=1

ξ2
i + βξ2

0 (10)

is realized, α and β are positive constants.

The generalized solution u(x) ∈ H1(Ω) of the problem (8), (9) is an element from H1(Ω) satisfying integral
identity

D(u, v) +
∫
∂Ω

d(x)u(x)v(x)dx = −(f, v) (11)

for ∀v(x) ∈ H1(Ω). If v = u in (11), we get

D(u, u) +
∫
∂Ω

d(x)u2(x)dx = −(f, u), (12)

by virtue of (10) from which follows∫
Ω

(
αu2

x(x) + βu2(x)
)
dx+

∫
∂Ω

d(x)u2(x)dx ≤ −(f, u) ≤ ||f ||H(Ω) · ||u||H(Ω). (13)

A priori estimations for the solution u(x) follows from (13)

||u||H(Ω) ≤
1
β
· ||f ||H(Ω), ||ux||2H(Ω) ≤

1
αβ
· ||f ||2H(Ω). (14)

Let us consider the case when Ω is the bounded domain, u ∈ C2(Ω) and operator D given by

Du = aij(x)
∂2u(x)
∂xi∂xj

+ bj(x)
∂u(x)
∂xj

(15)

where coefficients aij(x), bj(x) and c(x) are real measurable functions defined in Ω.

Let us assume that aij(x) = aji(x), that is a matrix of senior coefficients is symmetric.

Let operator D acting in C2(Ω) by (15) is elliptic, that is for ∃α > 0, ∀(ξ1, . . . , ξn) ∈ Rn the inequality
aij(x)ξiξj ≥ α|ξ|2 ≡ ξ2

i is correct.

Let f is measurable functions in Ω. The function u ∈ C2(Ω) is called as the regular solution of the equation
Du(x) = f(x), if it satisfies to this equation in each point x ∈ Ω. Closed domain Ω belongs to the A(k,λ) class,
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if in vicinity of each point x ∈ ∂Ω ∂Ω is given by ξn = γ(ξ1, . . . , ξn−1) in some system of coordinates, γ has k
continuous derivatives, and also γ(k) ∈ C(0,λ), that is it satisfies to Holder condition with index λ. [2].

For continuous function ϕ(x) on the border ∂Ω, measurable f(x) and elliptic operator D we consider the mixed
problem

Du(x) = f(x), x ∈ Ω, (16)

∂u(x)
∂η

+ d(x)u(x) = ϕ(x), x ∈ ∂Ω. (17)

Let us assume that aij ∈ C(1)(Ω).

Let ei = bi −
n∑
j=1

∂aij

∂xj
, then

Du =
∂

∂xj

(
aij

∂u

∂xi

)
+ ei

∂u

∂xj
+ cu.

If ei ∈ C(1)(Ω), then operator D∗ acting at function v(x) ∈ C(2)(Ω) by equation

D∗u =
∂

∂xj

(
aij

∂v

∂xi

)
+ ei

∂v

∂xi
+ cv

called as conjugate to D.

Let £(y, x) is Levi function, T (x) ⊂ Ω, T (x) is a family of domains, for example a family of balls of maximal
radius with center in x. Let us assume £(y, x) = 0 for y ∈ ∂T , then

u(x) =
∫
T

(
uD∗y£ + £f

)
dy −

∫
∂T

aij(y)
∂£
∂yi

ni u(y) dyS. (18)

The integral equation (18) can be solved by Monte Carlo methods, if the integral operator K of this equation
satisfies to condition

‖K‖H∞(Ω) = sup
x∈Ω

∫
T (x)

k(x, y) dy < 1, (19)

where k(x, y) is a node of the integral equation, it depends on aij(x), on a derivative ∂£
∂yi

and on component of
an external normal to border of the domain T . [2].

At performance of the condition (19) the integral equation (18) can be solved by ”random walk by spheres”
and ”random walk by balls ” algorithm of Monte Carlo methods, also it is possible to construct the ε–displaced
estimations for u(x). For example, such case is possible, if coefficients of the operator D are constant.

Let ∂Ω is a surface of Lyapunov, the surface Ω is convex, coefficients of the operator D are constant. Then the
norm of the integral operator acting in C(Ω) less than 1. Hence, it is possible to apply Neumann-Ulam scheme
to the equation (18).

The integral equation (18) is solved by ”random walk by balls” algorithm of Monte Carlo methods. By reaching
ε–boundary Markov chain reflected with the probability p∂Ωε

= |aij |
|aij |+|d| and adsorbed with the probability

q∂Ωε
= |d|
|aij |+|d| .

At transition from one condition to the following condition the ”weight” of node, that is defined by the recurrence
relation

Q0 = 1, Qi+1 = Qi
k(xi, xi+1)
pΩ(xi, xi+1)

, i = 0, 1, . . . ,

is taken into account. On a border the ”weight” of border proportional

Q∂Ω =
ϕ(xi)
|aij |+ |d|

is taken into account.

Let us denote by h a step of the difference scheme in each coordinate direction and by ei coordinate unit vector
in i-th coordinate direction. We approximate the domain Ω and operator D by finite difference method.
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Let us define
Gh(x) = 2

∑
i

aii(x)−
∑
i,j, i 6=j

|aij(x)|+ h
∑
i

|bi(x)|

and assume that
aii(x)−

∑
j, j 6=i

|aij(x)| > 0, i = 1, 2, . . . , n.

Then we define

∆th(x) =
h2

Gh(x)
,

ph(x, x± eih) =

aii(x)−
∑
j, j 6=i

|aij(x)|+ h2 b±i (x)

Gh(x)
,

ph(x, x+ eih± ejh) =
a±ij(x)
Gh(x)

,

ph(x, x− eih± ejh) =
a±ij(x)
Gh(x)

,

ph(x, y) = 0 for the others x, y ∈ Ω ∈ Rnh . Function ph(x, y) is nonnegative, the sum on y is equal 1 for each
x. This means that ph(x, y) is the probability of transitions of some Markov chain that we denote by

{
ξhn
}

.
ph(x, y) will be coefficients in finite difference approximation. It is easy to prove that to finite difference
mixed problem the Neumann–Ulam scheme is applicable.

We’ll divide a discrete border into the reflecting ∂ΩhR and the absorbing ∂ΩhA, then it is possible to construct
the ε–displaced approximation of the unique decision in the point x. For example, it is possible to construct
Markov chain by ”random walk by lattices” and to define

{
ξhn
}

along this chain. [3], [4], [5], [6], [7], [8].
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Amphibious complex orbits and its manifestation
in quantum mechanics

Akira Shudo

Department of Physics, Tokyo Metropolitan University, Tokyo Japan

The wavepacket in quantum mechanics has a nonzero transition amplitude to arbitrary regions even when the
initial and final regions are separated by energetic or dynamical barriers. Such an aspect has something in
common to classically ergodic systems in which orbits are allowed to come close to any point in phase space.
Apparently, this would be merely an analogy and one may think that these are entirely unrelated to each other
since the former is a result of an intrinsic dynamical property but the latter is due to purely quantum effects
like tunneling.

However, the studies on complex dynamical systems in more than one dimension have revealed there exists a
unique ergodic measure in complex phase space, which has mixing property and thus ergodic (Bedford & Smillie
1991a, 1991b, 1992). A remarkable fact is that it holds not only in hyperbolic systems but also in mixed systems
in which quasiperiodic or chaotic orbits coexist in phase space.

These mathematical results predict that the transition between classically disconnected regions occurs under
the same mechanism as in classically ergodic systems, and that the orbits connecting classically disjointed
components should have amphibious nature (Shudo et al 2008a, 2008b).

Here, we show that amphibious complex trajectories explain the existence of amphibious states which were
found as the quantum states ignoring underlying classical invariant structures (Hufnagel et al 2002, Bäcker et
al 2005). We also present the results of numerical investigations for a coupled kicked oscillator, in which the
amphibious states are realized without a special tuning of the system (Ishikawa et al 2007, 2008).
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Toward pruning front theory
for the Stokes geometry

Akira Shudo

Department of Physics, Tokyo Metropolitan University,Tokyo Japan

The saddle point method is known to be an efficient technique to approximately evaluate integrals. A difficulty
in applying the saddle point method in general is that not all of the saddles point solutions necessarily contribute.
The Stokes geometry carries all geometrical information to judge which saddles should appear in its evaluations
and which should be dropped, thereby it tells us how to construct global asymptotic solutions from the local
pieces.

Here we present an idea for developing bifurcation theory of the Stokes geometry in quantum maps whose
classical counterpart exhibit chaos (Shudo 2007, Shudo and Ikeda 2008). A concrete recipe to give the complete
Stokes geometry is presented for the quantum Hénon map, in which some new ingredients absent in conventional
theory of asymptotics (Aoki et al 1994, 2005a, 2005b, Howls 2004) are taken into account.

A key strategy is to first establish the Stokes geometry in the horseshoe limist, in which the underlying clas-
sical dynamics is described by the binary symbolic dynamics and the corresponding Stokes geometry is also
analytically tractable, and then to trace it as a function of the system parameter by focusing on bifurcation
of the Stokes geometry. The approach exactly follows the pruning front theory of classical symbolic dynamics
(Cvitanović et al1988).

References
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Cvitanović P, Gunaratne GH and Procaccia I 1988 Phys.Rev A38 1503-1520.
Howls CJ, Langman PJ and Olde Daalhuis AB 2004 Proc.R.Soc.London A460 2285-2303.
Shudo A 2007 Algebraic analysis of differential equations —from microlocal analysis to exponential asymptotics
— Festschrift in Honor of Takahiro Kawai, eds. T. Aoki, H. Majima, Y.Takei, N. Tose (Springer) 251-264.
Shudo A and K.S. Ikeda 2008 Nonlinearity in press.

58



Coupled oscillators: Why may they be used to describe
cardiovascular dynamics?

Aneta Stefanovska

Department of Physics, Lancaster University, Lancaster, UK
Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

For a healthy human in repose the heart expels blood about once per second in an oscillatory manner. An amount
of blood equivalent to the total amount (5.0–5.5 l) is circulated in about one minute. During this interval, which
may be considered as an average circulation time for blood around the human body, five oscillatory components
have been observed. They correspond to control mechanisms that reduce the velocity of flow, enabling the cells
that surround the capillary bed to exchange energy and matter efficiently with the blood, thereby realizing the
ultimate goal of the circulation. At the moment, this story, can be reconstructed only partially, because –

(i) The notion of flow is meaningful only at the macroscopic level, where many processes coexist and interact,
whereas microscopic studies of the mechanisms of vasomotion are of limited use.

(ii) Non-invasive techniques to record blood circulation in small vessels (based on laser Doppler measurements)
facilitate recordings of the skin flow. At greater depths, only the flow in the larger vessels can be assessed
(by ultrasound techniques).

(iii) Currently available methods of time series analysis allowing for reconstruction of time-variable complex
dynamics are limited in efficacy.

The development of data analysis methods for complex oscillatory dynamics following Grassberger and Proc-
cacia’s (1983) algorithm for calculation of the correlation dimension will be reviewed, and the advantages and
pitfalls of the currently used methods will be discussed. In addition, the possibilities of the phase dynamics
approach for reconstructing the dynamics properties of living systems will be considered, as will also the im-
portance of the uncertainty principle. Methods for the detection of synchronization and direction of coupling,
and the importance of surrogate data in hypothesis testing, will be outlined. The current state-of-the art
understanding of the cardiovascular system as a system of coupled oscillators will be reviewed.
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Can the brain and the cardiovascular system talk to each other and,
if so, how?

Aneta Stefanovska

Department of Physics, Lancaster University, Lancaster, UK
Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

The role of the central nervous system in controlling the cardiovascular system has been discussed in numerous
studies. The basic functional unit of the nervous system – the action potential – has been understood in
great detail. In their pivotal experiments, however, Hodgkin, Huxley and Katz (1952) clamped the membrane
potential at a constant value so that, ever since, its temporal dynamics was neither investigated nor properly
understood. In vivo, the ionic concentrations fluctuate continuously as part of the normal function of the
cardiovascular system. Recently developed non-invasive imaging techniques allow for understanding of the role
of glial cells in mediating the ionic concentrations of the neurones in the brain (Schipke et all, 2008), thereby
opening up the question of dynamical interactions between the cardiovascular oscillations and the brain waves.

We will review recent studies based on the phase dynamics approach that have began to illuminate possible
bidirectional causal interactions between the two systems. We show that the δ waves extracted from an EEG
signal, and the phase of respiration, are coupled differently during deep and light anæsthesia (Musizza et all,
2007). Moreover, using fMRI, a characteristic frequency of 0.03-0.04 Hz was demonstrated in the brain (Horovitz
et all, 2008). This frequency was already known to exist in the cardiovascular system. The characteristic
frequencies of these two major systems of the human organisms – the cardiovascular that takes care of energy
and matter exchange, and the neuronal system that takes care of information transfer within the body – will
be summarized, pointing to the new opportunities opened up by the phase dynamics approach for reaching an
understanding of how the two system interact so efficiently.
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Microwave studies of chaotic systems
Lecture 1: Currents and vortices

Hans-Jürgen Stöckmann

Fachbereich Physik,
Philipps-Universität Marburg, Marburg, Germany

In flat quasi-two-dimensional microwave resonators there is a one-to-one correspondence between the Helmholtz
equation for the electric field pointing from the bottom to the top, and the stationary Schrödinger equation
for the corresponding quantum-mechanical billiard system. This offers the unique possibility to test theories,
originally developed for quantum-mechanical systems, in their microwave analogue (Stöckmann 1999). I shall
illustrate these features in a series of three lectures.

In closed systems the wave functions are characterized by meandering patterns of nodal lines and domains, the
universal features of which can be well described by percolation theory. In open systems there are no longer
nodal lines, but only nodal points, corresponding to vortices of the quantum-mechanical flow. Here the random
plane wave approach has proven to be a powerful method to describe the universal features of the wave fields.
The model allows for an easy calculation of various distribution functions of currents, vortex densities etc., as
well as various pair correlation functions. In microwave experiments a large number of predictions from theory
could be verified (Kuhl et al. 2007).

In systems with a potential landscape the model is no longer applicable. Here the formation of caustics is
possible, leading to branch-like structures in the flow as observed on scanning tunneling microscopy (STM)
experiments on quantum point contact structures (Topinka et al. 2001). In microwave billiards potentials may
be realized by introducing appropriately shaped scatterers into the resonator. By this the STM results could
be qualitatively confirmed. The very same model has been also used for the formation of wave patters in the
sea due to locally varying velocity fields (Heller et al. 2008), thus allowing at the same time for the study of
non-Gaussian wave patterns (rogue waves etc.) in the ocean.
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Microwave studies of chaotic systems
Lecture 2: Line width distributions in open systems

Hans-Jürgen Stöckmann

Fachbereich Physik,
Philipps-Universität Marburg, Marburg, Germany

In a typical microwave experiment from the transmission between or refection at various antennas the system
properties are to be determined. There is the obvious question how to distinguish between the system properties
and those of the connecting cables, antenna connectors etc.. Scattering theory, originally developed in nuclear
physics, is the method of choice to cope with this situation (Guhr et al. 1998). The scattering matrix is given
by

S(E) = 1− 2ıW †
1

E −Heff
W (20)

where Heff = H − ıWW †. The diagonal elements Sii of the scattering matrix are the reflection amplitudes
at the ith antenna, whereas the non-diagonal elements Sij are the transmission amplitudes between antenna
i and j. H is the Hamiltonian of the unperturbed system, and the W matrix contains the information of the
coupling of the ith antenna to the nth wave function. There is a vast amount of theoretical studies (Beenakker
1998), as well as a number of microwave results (Kuhl et al. 2005). Up to now, however, apart from one
exception (Persson et al. 2000), only average quantities such as the distribution of reflection or transmission
coefficients have been studied. The poles of the scattering matrix had not been accessible, however, in the
regime of strong overlap. Here recently a breakthrough has been achieved. By an application of the method of
harmonic inversion (Wiersig, Main 2008) the poles of the scattering matrix could be resolved in a regime, were
the line widths exceed the mean level spacings by a factor of 10 and even more. By this it became possible to
test theories on the distribution of line widths in chaotic systems (Sommers et al. 1998), which seemed to be
unaccessible experimentally up to now.
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Microwave studies of chaotic systems
Lecture 3: A random matrix approach to fidelity

Hans-Jürgen Stöckmann

Fachbereich Physik,
Philipps-Universität Marburg, Marburg, Germany

The concept of fidelity has been introduced more then 20 years ago by Peres (1984) as a quantitative measure
to characterize the quantum-mechanical stability of a system against perturbations. The fidelity amplitude is
defined as the overlap integral of a wave packet |ψ0〉 with itself, after the evolution under two slightly different
Hamiltonians,

f(t) =
〈
ψ0

∣∣∣e ı
~ (H+λV )te−

ı
~Ht
∣∣∣ψ0

〉
(21)

where λV is a small perturbation of H. There had been a renewed interest in fidelity because of its obvious
relevance for quantum computing.

Most perturbations studied up to now had been global, which can be treated theoretically by taking H and V
from one of the Gaussian ensembles. In billiards a global perturbation can be achieved, e. g., by the shift of one
wall. Local perturbation had been overlooked, which is surprising, since most, if not all, perturbations in real
systems are of the local type, such as a diffusive jump of an atom, or a spin-flip. Only recently the fidelity decay
due to a local perturbation has been studied as well, realized in a microwave billiard by the shift of a small
scatterer (Höhmann et al. 2008). For local perturbations it is easy to calculate the fidelity decay analytically,
which shows up to be algebraically, again by using the random plane wave approach.

For global perturbations supersymmetry techniques can be used to calculate the Gaussian averages analytically
(Stöckmann, Schäfer 2005). In this case the long-time decay is either Gaussian or exponential. On this occasion
a short tutorial introduction into the concept of supersymmetry will be given. We shall see that the underlying
ideas are simple, and often exact results are easy to obtained. Unfortunately mostly the resulting integrals are
very complicated, and much additional effort is needed to bring the solution, though exact, into a form which
is suitable for practical purposes.
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On the mechanism of quantization of chaos.

- Phase quantization -

Kazuo Takatsuka

Department of Basic Science, Graduate School of Arts and Sciences,

The University of Tokyo, Komaba, Tokyo, Japan

Since the early stage of the study of Hamilton chaos, semiclassical quantization based on the low-order Wentzel-
Kramers-Brillouin (WKB) theory, the primitive semiclassical approximation to the Feynman path integrals (or
the so-called Van Vleck propagator), and their variants have been suffering from difficulties such as divergence
in the correlation function, and so on. Even the celebrated Gutzwiller trace formula is not an exception. It
is widely recognized that the essential drawback of these semiclassical theories commonly originates from the
erroneous feature of the amplitude factors in their applications to classically chaotic systems. This makes a clear
contrast to the success of the Einstein-Brillouin-Keller quantization condition for regular (integrable) systems.
We show here that energy quantization of chaos in semiclassical regime (characterized with a small Planck
constant) is, in principle, possible in terms of constructive and destructive interference of phases alone, and the
role of the semiclassical amplitude factor is indeed negligibly small, as long as it is not highly oscillatory [1]. To
do so, we first sketch the mechanism of semiclassical quantization of energy spectrum with the Fourier analysis
of phase interference in a time correlation function, from which the amplitude factor is practically factored
out due to its slowly varying nature [2]. In this argument there is no distinction between integrability and
nonintegrability of classical dynamics. Then we present numerical evidences that chaos can be indeed quantized
by means of amplitude-free quasi-correlation functions. This is called phase quantization [1]. Finally, we show
explicitly that the semiclassical spectrum is quite insensitive to smooth modification (rescaling) of the amplitude
factor [3]. At the same time, we note that the phase quantization naturally breaks down when the oscillatory
nature of the amplitude factor is comparable to that of the phases, which is quite likely to be materialized in a
very high energy case and/or in dynamics on a hard potential function like the stadium billiard. Such a case
generally appears when the Planck constant of a large magnitude pushes the dynamics out of the semiclassical
regime. We will show a possible route to such a regime beyond the standard WKB theory.

[1] Takahashi S and Takatsuka K 2007 J. Chem. Phys. 127, 084112.
[2] Ushiyama H and Takatsuka, K 2005 J. Chem. Phys. 122, 224112.
[3] Yamashita T and Takatsuka K 2007 Prog. Theoret. Phys. Suppl. 161, 56.
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Quantum wavepacket bifurcation and entanglement in molecules.

- Generalization of classical mechanics -

Kazuo Takatsuka

Department of Basic Science, Graduate School of Arts and Sciences,
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I discuss characteristic dynamics of a system consisting of classical and quantum subsystems strongly coupling
with each other. Typically, the quantum subsystem is composed of light and fast particles, while heavy and
slow particles constitute the classical subsystem. Such systems are quite ubiquitous, since molecules are more
or less approximated in terms of this mixed quantum-classical representation, with nuclei being heavy and
classical particles and electrons being light and quantum particles. More explicitly, the separation of electronic
and nuclear motions based on this idea constitutes the heart of the so-called Born-Oppenheimer approximation,
which is now the standard concept in material sciences. In the Born-Oppenheimer view, nuclei are supposed to
propagate in time (either classically or quantum mechanically) on a potential energy function, which is given
as electronic energy at parametrically fixed nuclear coordinates.

We first examine the validity range of the Born-Oppenheimer (BO) approximation with respect to the variation
of the mass (m) of negatively charged particle by substituting an electron (e) with muon (µ) and antiproton
(p̄) in hydrogen molecule cation [1]. With use of semiclassical quantization applied to (ppe), (ppµ), and (ppp̄)
under a constrained geometry, we estimate the energy deviation of the non-BO vibronic ground state from
the BO counterpart. It is found that the error in the BO approximation scales to the power of 3/2 to the
mass of negative particles, that is, m1.5. The origin of this clear-cut relation is analyzed based on the original
perturbation theory due to Born and Oppenheimer, and it is shown the first correction to the BO approximation
should arise from the sixth order term that is proportional to m6/4.

We next proceed to the breakdown of the Born-Oppenheimer approximation, in which two (or more) adiabatic
potential energy functions undergo near degeneracy (the so-called avoided crossing). In the vicinity of this
avoided crossing, the electronic and nuclear motions strongly couple and thereby entangle. In passing this re-
gion, both the electronic and nuclear wavepackets bifurcate in the standard manner of quantum entanglement.
We show such wavepacket bifurcation can be directly observed in terms of the femtosecond pump-probe photo-
electron spectroscopy. As an illustrative example, we show a (theoretically mapped) movie of such a wavepacket
bifurcation arising from the nonadiabatic (non-Born-Oppenheimer) motion on the ionic (Na+I−) and covalent
(NaI) states of sodium iodide [2].

Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of
the standard methods of molecular dynamics (as in the simulation of protein dynamics). However, as soon as
more than a single potential energy surface are involved due to nonadiabatic coupling as above, such a naive
application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in
the foundation of molecular and material science. To cope with this problem, we propose a generalization of
classical mechanics, in which the force appears as a matrix with the dimension equal to the number of the
adiabatic states involved. With this matrix force, the ”classical” paths passing across the avoided crossing
region undergo branching associated with the simultaneous electronic wavepacket bifurcation, thereby making
the quantum-classical description of entanglement possible [3]. Numerical examples along with relevant graphics
will be presented in a realistic molecular system.
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Model based development of
desynchronizing brain stimulation techniques I:

Reshaping neural networks

Peter A. Tass
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Within the last years standard high-frequency (HF) deep brain stimulation became the standard therapy for
medically refractory movement disorders. HF deep brain stimulation has been developed empirically, mainly
based on observations during neurosurgical procedures. In contrast, to overcome limitations of standard HF deep
brain stimulation, we use a model based approach. We make mathematical models of affected neuronal target
populations and use methods from statistical physics, nonlinear dynamics, and synergetics to develop mild and
efficient control techniques (Tass 1999; 2003; Hauptmann et al. 2007a, 2007b; Tass et al. 2008; Popovych et al.
2005; Omel’chenko et al. 2008). We specifically utilize dynamical self-organization principles and plasticity rules.
In this way, we have developed multi-site coordinated reset (MCR) stimulation, an effectively desynchronizing
brain stimulation technique (Tass 2003). The goal is not only to counteract pathological synchronization on a
fast time scale, but also to unlearn pathological synchrony by therapeutically reshaping neural networks (Tass
& Majtanik 2003). We examined the effects of MCR stimulation in 20 patients with severe Parkinson’s disease
or essential tremor during the first week after electrode implantation with a novel portable brain stimulator.
According to our theoretical predictions, in all 20 patients epochs of MCR stimulation caused pronounced
therapeutic effects, which outlasted MCR stimulation during the whole post-MCR observation period prior to
dismissal (i.e. during at least four days).
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Model based development of
desynchronizing brain stimulation techniques II: Target point

diagnosis and
restoring physiological connectivity
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High-frequency test stimulation for tremor suppression is a standard procedure for functional target localization
during deep brain stimulation. This method does not work in cases where tremor vanishes intraoperatively, e.g.
due to global anesthesia or due to an insertional effect. To overcome this difficulty, we developed a stimulation
technique that effectively evokes tremor in a well-defined and quantifiable manner. For this, we used patterned
low-frequency stimulation (PLFS), i.e. brief high-frequency pulse trains administered at pulse rates similar to
the neurons’ preferred burst frequency (Barnikol et al. 2008). In a computational investigation of an oscillatory
neuronal network temporarily rendered inactive, we found that already at weak stimulus intensities PLFS
evokes synchronized activity, phase locked to the stimulus. We applied PLFS to a patient with spinocerebellar
ataxia type 2 (SCA 2) with pronounced tremor that disappeared intraoperatively under general anesthesia.
In accordance with our computational results, PLFS evoked tremor, phase locked to the stimulus (Barnikol
et al. 2008). In particular, weak PLFS caused low-amplitude, but strongly phase-locked tremor (Barnikol et
al. 2008). PLFS test stimulations provided the only functional information about target localization. Optimal
target point selection was confirmed by excellent postoperative tremor suppression (Freund et al. 2007; Barnikol
et al. 2008). The clinical results obtained in our SCA 2 patient with permanent high-frequency stimulation
are in accordance with a computational study (Hauptmann & Tass 2007). Additionally taking into account
physiological input into neuronal populations, we revealed that multi-site coordinated reset stimulation is able
to restore physiological connectivity (in preparation). Implications thereof will be explained in detail.
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Dynamical Reaction Theory

Mikito Toda
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We will discuss the dynamical reaction theory for multi-dimensional Hamiltonian systems. Roughly speaking,
the dynamical processes of reactions consist of the following three, i.e., redistribution of energy among vibra-
tional modes in the potential well, going over the potential saddles, and their dynamical connection. For each of
the former two processes, perturbation approach is possible to construct the normal form. For the distribution,
the normal form describes how the vibrational modes exchange energy in the well. When nonlinear resonance
takes place, the perturbation theory breaks down, and energy exchange among vibrational modes is enhanced
dramatically there. In the action space, resonant regions constitute the network called the Arnold web. There-
fore, properties of the Arnold web play an important role in our topics. For the processes of going over the
saddle, the normal form theory is developed recently, which provides a mathematically sound foundation of the
concept of transition states (TSs). The theory is based on the phase space structures called normally hyperbolic
invariant manifolds (NHIMs). It enables us to define the boundary between the reactant and the product, and
to single out the reaction coordinate near the saddles of index one.

After reviewing these concepts, we discuss the following three subjects. First, we present existence of fractional
behavior for processes in nonuniform Arnold webs. We also discuss reaction processes under laser fields utilizing
cooperative effects of laser fields and the Arnold web. This offers a possibility of manipulating reaction processes
by designing laser fields. Second, We discuss that the conventional idea of reaction coordinates is not valid
when the condition of normal hyperbolicity is broken. These situations take place when the values of tangential
Lyapunov exponents on the NHIMs become comparable to those of the normal exponents. Third, we discuss the
network of intersections between stable/unstable manifolds emanating from the NHIMs in multi-dimensional
Hamiltonian systems. We point out that the network enables the chaotic itinerancy in Hamiltonian dynamical
systems.
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Granular Matter Dynamics

I. The Many Phases of Vibrated Granular Matter
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Mathematics Department,
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Vibrated granular matter can behave in an amazing variety of ways, ranging from solid-like when the shaking is
weak, to fluid-like and even gas-like behavior at strong shaking [Jaeger et al. 1996; Aranson and Tsimring 2006].
In this lecture we bring some order in this dynamical labyrinth by constructing a phase diagram for vertically
shaken granular matter in a 2D container [Eshuis et al. 2007].

At weak shaking, the observed phenomena (a bouncing bed, which starts to exhibit standing waves like a violin
string when the shaking is increased) are well described by mechanical models [Sano 2005; Eshuis et al. 2007].

At stronger shaking, the phenomena are better described by granular hydrodynamics [Goldhirsch 2003]. For
increasing shaking strength, the standing waves first give way to the Leidenfrost state (in which a dense cloud of
particles is held afloat by a gas-like layer of fast particles underneath [Eshuis et al. 2005]), followed by a transition
to buoyancy driven convection: The particles now form counter-rotating rolls very similar to Rayleigh-Bénard
convection rolls in an ordinary fluid [Khain and Meerson 2003; Eshuis et al. 2008]. Finally, at even higher
shaking strengths the grains are swept into a gaseous state, moving wildly throughout the container. We will
focus especially on the hydrodynamic description of the phenomena at strong shaking.
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Granular Matter Dynamics

II. Faraday’s heaping effect unravelled
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One of the classic and most enigmatic phenomena exhibited by granular matter is Faraday heaping: When a
bed of fine sand is vertically vibrated, its initially flat surface breaks into a landscape of heaps, which in the
course of time tend to coarsen into a single larger heap [Faraday 1831; Behringer et al. 2002]. As was already
suggested by Faraday, the surrounding air must play a crucial role in this process since at very low pressures,
when the air drag on the particles can be ignored, no heaping of any kind is observed [Pak et al. 1995].

Until recently, the heaping had been studied mostly experimentally, giving rise to several rivaling explana-
tions: internal avalanches [Laroche et al. 1989], horizontal pressure gradients [Thomas and Squires 1998], and
enhanced stability of inclined surfaces [Duran 2002]. Here we describe numerical simulations, closely corre-
sponding to experiment, that confirm the horizontal pressure mechanism of Thomas and Squires. We show
that the heaps are formed by the air that flows - through the bed - into the void beneath the bed when this
detaches from the vibrating bottom. Our simulations also explain the eventual coarsening into one single heap
[Van Gerner et al. 2007].
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Chaotic scattering in the regime of weakly overlapping resonances

Hans A. Weidenmüller
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Chaotic quantum scattering occurs when Schrödinger waves are scattered by a system with chaotic classical
dynamics. The eigenvalues of the system manifest themselves as resonances with average spacing D and average
width Γ. For chaotic systems, the spectral fluctuation properties of these eigenvalues coincide with the predic-
tions of random–matrix theory (RMT) for matrices of the same symmetry class (“Bohigas–Giannoni–Schmit
conjecture”). For time–reversal invariant systems, the matrix ensemble is the Gaussian Orthogonal Ensemble
(GOE) of real and symmetric matrices.

The theory of chaotic scattering uses RMT or related models to predict average cross sections and correlation
functions of scattering amplitudes in all three regimes, the regime of isolated resonances (Γ � D), the regime
of weakly overlapping resonances (Γ ≈ D), and the regime of strongly overlapping resonances (Γ � D) (the
“Ericson regime”). After reviewing some results for Γ � D and for Γ � D (where the theory has been
thoroughly tested), I will focus attention on the comparison of recent experimental results on microwave billiards
of the Darmstadt group with theory in the regime Γ ≈ D.
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Preponderance of ground states with spin zero and/or positive
parity
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To explore generic features of the nuclear shell model, one often uses a random–matrix model, the two–body
random ensemble (TBRE). In the TBRE, the two–body matrix elements of the shell model are taken to be
Gaussian–distributed random variables with mean values zero and a common second moment. The single–
particle states within a major shell are assumed to be degenerate. In 1998, Johnson, Bertsch, and Dean
observed that in the TBRE, ground states with spin zero occur much more frequently than corresponds to
their statistical weight. In 2004, Zhao et al. showed that in the TBRE, states with positive parity are likewise
favoured ground states. That “predominance” of ground states with fixed quantum numbers occurs also in
atoms and for bosons and has, therefore, found wide attention.

In the lecture, I will present these surprising facts and the explanations that have been put forward in the
literature. I will then focus attention on a model which permits a detailed analytical and numerical study of
the preponderance of ground states with positive parity. The model, worked out in collaboration with Thomas
Papenbrock, leads to a thorough understanding of the phenomenon.
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Spectral Fluctuation Properties of Constrained Ensembles of
Random Matrices
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Wigner’s random matrices enjoy wide applications in many fields of physics. Depending on the symmetries of
the system, one uses one of Dyson’s three canonical random–matrix ensembles to model successfully spectral
fluctuation properties of or chaotic scattering on the system. That success of canonical random–matrix theory
(RMT) is somewhat surprising since typically, the structure of the Hamiltonian of the system differs from that
of a Gaussian random matrix: It may, for instance, be sparse or banded.

More realistic random–matrix models that take into account such structural details lack the invariance properties
of the canonical ensembles. This is why it has so far not been possible to derive the spectral fluctuation properties
of these ensembles analytically. A recent approach to such ensembles views them as constrained ensembles (some
matrix elements of the canonical ensembles are constrained to vanish).

In the lecture, I will introduce the three canonical ensembles of RMT. I will then motivate the use of constrained
ensembles, and I will present analytical results on level repulsion and on spectral fluctuation properties that
have recently been obtained in collaboration with Thomas Papenbrock and Zdenek Pluhar.
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Planet formation
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Lecture 1: Observational evidence and review of theories

The theoretical basis for understanding the formation of the planets in our own solar system is far from secure.
Also, in the last decade several hundred planets have been discovered orbiting other stars (Butler et al 2006)
and these discoveries have included some surprises. For example, there are numerous extra-solar planets with
very eccentric orbits, and gas-giant planets which orbit close to their star.

The standard theories for planet formation (Safranov, 1969, Goldreich and Ward 1973) involve building up
planets from dust grains which are suspended in the gas of the circumstellar nebula surrounding young stars. I
will review the standard models for the growth of planets starting from the aggregation of dust particles, and
describe some of the difficulties faced by these models. I shall describe some recent attempts to circumvent
these difficulties by embellishments of the standard models (Johansen et al, 2007, Kretke and Lin, 2007). At
the end of the lecture I will mention a new and radically different theory which we have proposed (Wilkinson
and Mehlig, 2008).
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Lecture 2: Collision rates and relative velocities of turbulent aerosols

The standard model for planet formation involves the aggregation of dust particles in a circumstellar accretion
disc. It is surmised that the gas in the accretion disc must be turbulent in order to explain the relatively short
lifetime of accretion disc. This makes it necessary to understand the dynamics of dust particles in a turbulent
gas. I will review some basic properties of turbulent flows (Frisch, 1995), and describe some recent results on
the relative velocities and collision rates of the particles (Wilkinson et al, 2006, Mehlig et al, 2007, Gustavsson
et al, 2008).

I shall also describe how the properties of the gas in the circumstellar accretion disc can be estimated from a
steady-state theory with very few input parameters, using a theory of Shakura and Sunyaev (1973).

The dust particles are bound by van der Waals and other weak electrostatic forces. I will describe some estimates
for the collision speed at which aggregates of dust particles will be fragmented (Dominik and Tielens, 1997),
and show that the relative speeds of colliding dust aggregates make them very vulnerable to being fragmented
(Wilkinson et al, 2008). This is a strong indication that an alternative theory must be sought.
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Lecture 3: Can gravitational direct collapse create planets?

I shall describe an alternative hypothesis for the formation of planets, developed in collaboration with Bernhard
Mehlig, which we term Concurrent Collapse. According to our hypothesis, when a cloud of interstellar gas
collapses to form a star, it fragments, giving rise to smaller objects which are gravitationally bound to the star.
These juvenile planets are initially formed in non-circular orbits and have an elemental composition which is
representative of the star. The juvenile planets can interact with the accretion disc in such a way that their
orbit and their composition can be dramatically changed. Collisions between juvenile planets are also possible.
Our hypothesis avoids having to resolve the difficulties faced by the dust aggregation model. It also provides
satisfying explanations for the existence of exoplanets with eccentric orbits, for the occurrence of FU Orionis
outbursts and for the melting of chondrules found in meteorites. Our explanation will be contrasted with those
offered in the framework of the standard models (Ford et al 2003, Lodato and Clark, 2004, Hewins, 1997).

The concurrent collapse hypothesis depends upon the assumption that a gravitationally collapsing gas cloud will
fragment. Gravitational collapse is imperfectly understood process. I will describe Jeans’ theory for determining
the size of objects formed by gravitational collapse, and discuss some of the arguments which have been advanced
in the past to support the view that collapse is normally accompanied by fragmentation (Hoyle 1953, Low and
Lynden-Bell, 1976, Padoan and Nordlund, 2002). None of these are really satisfactory. I will present an outline
for a new theoretical approach to this problem.
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Bifurcations, order, and chaos in Bose-Einstein condensates with
long-range interactions
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Bose-Einstein condensates with long-range atomic interactions, in addition to the contact interaction, open
the possibility of studying the properties of degenerate quantum gases in which the relative strengths of long-
and short-range interactions can be continuously adjusted by tuning the contact interaction via a Feshbach
resonance. Examples are Bose-Einstein condensates of neutral atoms with electromagnetically induced attrac-
tive 1/r interaction (O’ Dell et al. 2000) and dipolar Bose-Einstein condensates (Santos et al. 2000). The
achievement of Bose-Einstein condensation in a gas of chromium atoms (Griesmaier et al. 2005), with a large
dipole moment, has opened the way to promising experiments on quantum gases with long-range interactions
(Koch et al. 2008). In both types of condensates universal stability thresholds exist where collapse of the
condensates sets in. We show that these thresholds in fact correspond to bifurcation points where always two
solutions of the Gross-Pitaevskii equation disappear in a tangent bifurcation (Papadopoulos et al 2007), one
dynamically stable and the other unstable. We point out that the thresholds also correspond to “exceptional
points” (Cartarius et al 2008a, b), i.e. branching singularities of the Hamiltonian. We analyze the dynamics of
excited condensate wave functions via Poincaré surfaces of section and find both regular and chaotic motion,
corresponding to (quasi-) periodically oscillating and irregularly fluctuating condensates, respectively (Wagner
et al 2008). Stable islands are found to persist up to energies well above the saddle point of the mean field
energy, alongside with collapsing modes.
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Cold atoms in optical lattices form a wonderful toolbox (Jaksch and Zoller 2005) for creating novel matter phases
realizing a “condensed matter theorist dream”. This comes from an unprecedented control of the parameters
in cold atoms physics where both the depth of the optical lattice (changing laser intensity or detuning) as well
as atom-atom interactions (via external magnetic field and Feshbach resonances) can be modified with great
precision. This allows for observation of quantum phase transitions (Sachdev 2001) as exemplified for the Bose-
Hubbard (BH) tight binding model (Fisher et al. 1989, Jaksch et al. 1998, Greiner et al. 2002). Novel phases
can be developed by studying Fermi-Bose or Bose-Bose mixtures as well as for the so called spinor condensates
(where atoms in a few Zeeman sublevels are trapped together in optical traps) - review of Lewenstein et al.
(2007) is a valuable introduction to that subject.

For a quantum chaos community particularly interesting may be studies of disordered systems. Here cold
atomic settings allow to introduce disorder n a controllable and repeatable way using optical potentials created
by laser speckles or bichromatic lattices (Damski et al.2003, Roth and Burnett 2003). This opened up exciting
possibilities for a clear observation of Anderson localization for weakly interacting bosons. This effort, after
preliminary, discouraging results (Clément et al. 2005, Fort et al. 2005, Schulte et al. 2005) has led to a
spectacular success quite recently (Billy et al. 2008, Roati et al 2008). For strongly interacting bosons in a
deep optical lattice the existence of a novel phase called Bose-glass phase has been predicted (Giamarchi and
Schulz 1988, Fisher et al. 1989). Recently, the first attempt to produce this phase with ultracold atoms in a
bichromatic quasi-disordered optical lattice has been reported (Fallani et al.07). This experiment is analysed
using Time-evolving block-decimation (TEBD) algorithm of Vidal (2003).

The work supported by Marie Curie ToK project COCOS (MTKD-CT-2004-517186).
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One of the most fascinating puzzles in particle astrophysics today is that of the origin and nature of the highest
energy cosmic rays. These particles have energies orders of magnitude beyond even the future capabilities of
any earthly particle accelerator. Such energies are so extreme that they could arise in only the most violent
places in the universe.

The Pierre Auger Observatory is a major international effort to make precise, high statistics studies of the
cosmic rays with energies above 1019 eV. The Southern Observatory was constructed in Province of Mendoza,
Argentina and is designed to work in a hybrid mode incorporating both a ground array of 1.600 particle detectors
spread over 3.000 km2 with fluorescence telescopes placed on the boundary of the surface array.

First data collected by the P. Auger Observatory provide evidence for anisotropy in the arrival directions of the
cosmic rays with highest energies, which are correlated with the positions of relatively nearby Active Galactic
Nuclei.
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Quantum entanglement is one of the properties that makes quantum theory “strange” and different from classical
physics. While the concept of entanglement has been known from the very beginning of quantum theory, only
relatively recently have experiments advanced to the point of enabling manipulation of individual quanta.
What is more, it has been realized that the entanglement can be used to our advantage. It enables for powerful
quantum protocols that are better than the best classical procedures. In the lecture we shall address two
questions: (i) what is the entanglement of typical quantum states, and (ii) how it comes that there is apparently
no entanglement in macroscopic world. To explain the latter we will use properties of typical quantum states,
that is states drawn according to unitarily invariant Haar measure.

In the first part we shall quantify the entanglement of random quantum states by calculating the average values
of Schmidt coefficients. We will also study protocols for generating random quantum states. Efficiency of the
protocol can be expressed in terms of a gap of Markovian process. In the second part we will show how to
use properties of random states to explain the lack of entanglement for macroscopic systems. There will be
two issues, practicality of detection and the role played by generic initial conditions. First, we shall show that
the detection of entanglement in random quantum states is very hard, in fact, it gets exponentially hard with
the number of particles. Second, we shall show that if the initial condition is a generic separable state then
time evolution with an arbitrary hamiltonian will after very short time result in a state having no entanglement
between subsystems of few degrees of freedom.
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A link between properties of quantized chaotic systems and random matrices will be reviewed. Dynamics of
a closed quantum system can be represented by a unitary evolution of a pure state in the Hilbert space. We
consider the case of a finite dimensional Hilbert space HN . Statistical properties of periodically driven quantum
chaotic systems can be described by one of three circular ensembles of random unitary matrices, which belong
to U(N). The symmetry properties of the quantum system determine which of three universality classes –
orthogonal, unitary or symplectic should be used.

To describe the effect of a possible interaction of the system in question with an environment one needs to work
with density operators, which are Hermitian, positive and normalized. Discrete time evolution of a density
matrix can be represented by so-called quantum operation (completely positive, trace preserving map). We are
going to review the canonical Kraus form of such an operation and its representation by the dynamical (Choi)
matrix.

To describe dynamics of an chaotic quantum system, interacting with an environment we introduce an ensemble
of random operations and discuss practical algorithms to generate them. We investigate spectral properties of
the associated superoperator Φ, which sends the set of quantum states of size N into itself, and state a quantum
analogue of the Frobenius-Perron theorem concerning the spectrum of stochastic matrices.

We derive a general formula for the density of eigenvalues of Φ and show that for large N they are described
by the real Ginibre ensemble of random matrices. We analyze the size of the spectral gap, which implies that
a generic state of the system converges exponentially to an invariant state.
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